Issue
HWAHAK KONGHAK,
Vol.31, No.4, 457-465, 1993
흡착성 고체입자의 슬러리에 CO2 기체 흡수
Gas Absorption of CO2 into Slurry of Fine Adsorptive Particle
25℃, 1 atm에서 준 회분식 교반조 흡수기를 사용하여 activated carbon, white carbon 및 용융 alumina의 슬러리에 흡수시킨 CO2 기체의 흡수속도를 측정하여 Danckwerts의 plot방법을 사용하여 CO2 기체의 액상측 물질전달계수를 구하였다. 슬러리에 CO2 기체의 포화농도와 고체입자의 부피분율은 선형관계가 성립하였으며, 이 선형관계식으로부터 activated carbon 및 용융 alumina의 흡착평형상수를 구하였으며, 그 값은 각각 57.4, 4.35 및 0이었다. 측정한 액상측 물질전달게수를 사용하여 슬러리농도 증가에 따라 증가한 흡수속도 촉진계수를 표면갱신설로서 해석하였다. 입자의 크기에 따라 나타난 흡수촉진현상을 표면갱신속도를 사용한 왕복 메카니즘으로 설명하였다.
The adsorption of carbon dioxide into slurry was carried out using a stirred absorber in the presence of solid particles like activated carbon, white carbon and fused alumina at 25℃ and 1 atm. The liquid-side mass transfer coefficient of CO2 gas could be obtained using the Danckwerts’plot with the experimental absorption rates. The adsorption equilibrium between the dissolved gas in the solution and the adsorbed gas onto the surfaces of solid particles was instantaneously attained linearly, and the adsorption equilibrium constants of activated carbon, white carbon and fused alumina were 57.4, 4.75 and 0, respectively. The surface renewal model modified with the shuttle mechanism could explain the enhancement phenomena of absorption rates into slurry of the particles smaller than or equal to the liquid thickness calculated by the film theory.
[References]
  1. Ramachandran PA, Sharma MM, Chem. Eng. Sci., 24, 1681, 1969
  2. Uchida S, Koide K, Shindo M, Chem. Eng. Sci., 30, 644, 1975
  3. Uchida S, Koide K, Wen CY, Chem. Eng. Sci., 32, 447, 1977
  4. Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 32, 1165, 1977
  5. Niiyama H, Smith JM, AIChE J., 23, 592, 1977
  6. Uchida S, Moriguchi H, Maejima H, Koide K, Kageyma S, Can. J. Chem. Eng., 56, 690, 1978
  7. Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 34, 715, 1979
  8. Joosten GEH, Schilder JGM, Janssen JJ, Chem. Eng. Sci., 32, 563, 1977
  9. Kars RL, Best RJ, Brinkenburg AH, Chem. Eng. J., 17, 201, 1979
  10. Sylvester ND, Dianat S, Ind. Eng. Chem. Process Des. Dev., 19, 199, 1980
  11. Miyachi M, Iguchi A, Uchida S, Koide K, Can. J. Chem. Eng., 59, 640, 1981
  12. Ptasinski KJ, vanSwaaij WPM, Chem. Eng. Sci., 41, 1943, 1986
  13. Nagy E, Blickle T, Ujhidy A, Chem. Eng. Sci., 41, 2193, 1986
  14. Quicker G, Alper E, Decker WD, AIChE J., 33, 871, 1987
  15. Holstvoogd RD, vanSwaaij WPM, vanDirendock LL, Chem. Eng. Sci., 43, 2181, 1988
  16. Quicker G, AlperE, Decker WD, Can. J. Chem. Eng., 67, 32, 1989
  17. Karve S, Juvecar VA, Chem. Eng. Sci., 45, 587, 1990
  18. Mehra A, Chem. Eng. Sci., 45, 1525, 1990
  19. Park SW, Kim SS, Kim JH, HWAHAK KONGHAK, 28(1), 52, 1990
  20. Park SW, Kim SS, Han SB, HWAHAK KONGHAK, 28(3), 327, 1990
  21. Park SW, Kim SS, HWAHAK KONGHAK, 28(4), 379, 1990
  22. Danckwerts PV, Ind. Eng. Chem., 43, 1460, 1951
  23. Alper E, Deckwer WD, Danckwerts PV, Chem. Eng. Sci., 35, 1263, 1980
  24. Danckwerts PV, "Gas-Liquids Reactions," McGraw-Hill, New York, NY, p. 109, 1970
  25. Roberts D, Danckwerts PV, Chem. Eng. Sci., 17, 961, 1962
  26. Danckwerts PV, "Gas-Liquids Reactions," McGraw-Hill, New York, NY, p. 18, 1970
  27. Thomas WJ, Adams MJ, Trans. Faraday Soc., 61, 668, 1965