Issue
HWAHAK KONGHAK,
Vol.28, No.2, 142-151, 1990
쿠엣트 응집기를 이용한 고형물의 응집 및 고-액 분리에 관한 실험적 연구
Experimental Studies on Flocculation of Solid Particles and Solid-Liquid Separation with Couette Flocculators-Part3. Scale-up of Couette Flocculators and its Application
테일러 와류의 형성이 가능한 두 개의 쿠엣트 응집기를 활용하여 수용액 중 고형물의 응집 및 분리특성을 고찰하였다. 연속실험을 통하여 두 응집기에 대한 유동학적 유사성을 조사하고 응집기의 대형화 가능성을 검토하였다. 최적 체류시간은 두 개의 쿠엣트 응집기에 대하여 약 150-180초로 확인되었다. 또한 두 개의 응집기가 동일한 회전수에서 최적 응집조건을 나타내었다. 응집기의 대형화 인자, 현탁입자의 농도와 고분자 응집제의 농도로부터 최적 테일러 수를 나타내는 상관식을 얻었다. 고형물의 응집 후 연속적이고 효율적인 고-액 분리를 도모하기 위하여 쿠엣트 응집기에 경사판 침전장치를 부착시켜 각종 성능실험을 실시하였다. 이러한 연속식 실험장치는 분리성능이 우수하였으며 이들 장치의 실용성과 응용성이 가능한 것으로 판단되었다.
The study of flocculation in Couette flocculators showing Taylor vortices and subsequent solid-liquid separation characteristics were conducted experimentally. In continuous experiments two flocculators were used to ex-tract the hydrodynamic similarity and proper parameters for the flocculator scale-up. The optimum retention time was found about 150-180 seconds in the present experiments. Also, optimum flocculation conditions in two flocculators were reached at the same rotational speed of the inner cylinder. With these results a correlation of the optimum Taylor number was obtained as a function of the scale-up factor, the suspension concentration and the flocculant concentra-tion. To facilitate the solid-liquid separation an inclined plate settler was attached to the Couette flocculator. Through continuous experiments in this combined apparatus it was found that the separation performance was excellent. All these results show that the Couette flocculator with the mclmed plate settler may be used efficiently in solid-liquid separation.
[References]
  1. Tomi DT, Bagster DF, Trans. IChemE, 56, 1, 1978
  2. Pandya JD, Spielman LA, Chem. Eng. Sci., 38, 1983, 1983
  3. Koh PTL, Andrews JRG, Uhlherr PHT, Chem. Eng. Sci., 39, 975, 1984
  4. Jeon G, Choi CK, HWAHAK KONGHAK, 27(6), 812, 1989
  5. Jeon G, Choi CK, HWAHAK KONGHAK, 28(1), 30, 1990
  6. Culp G, Hansen S, Richardson G, J. AWWA, 60, 681, 1968
  7. Willis RM, J. AWWA, 70, 331, 1978
  8. Yusa M, Suzuki H, Tomaka S, J. AWWA, 67, 397, 1965
  9. Kaye J, Elgar EC, J. Heat Transfer Trans. ASME, 80, 753, 1958
  10. Astill KN, J. Heat Transfer Trans. ASME, 86, 383, 1964
  11. Kataoka K, Doi H, Komai T, Int. J. Heat Mass Transf., 20, 57, 1977
  12. Kataoka K, Takigawa T, AIChE J., 27, 504, 1981
  13. Gu ZH, Fahidy TZ, Chem. Eng. Sci., 40, 1145, 1985
  14. Margaritis A, Wilke CR, Biotechnol. Bioeng., 20, 709, 1978
  15. Mariorella B, Wilke CR, Blanch HW, Adv. Biochem. Eng., 20, 43, 1981
  16. Tobler W, Filtr. Sep., 16, 630, 1979
  17. Tobler W, Filtr. Sep., 19, 329, 1982
  18. Scott CD, Sep. Sci. Technol., 21, 905, 1986
  19. Yoshisato RA, Korndorf LM, Carmichael GR, Datta R, Sep. Sci. Technol., 21, 727, 1986
  20. Schlichting H, "Boundary Layer Theory," 7th ed., McGraw-Hill, New York, NY, 1979
  21. Graham W, Lama R, Can. J. Chem. Eng., 41, 31, 1963
  22. Oliver DR, Jenson VG, Can. J. Chem. Eng., 42, 191, 1964
  23. Zahavi E, Rubin E, Ind. Eng. Chem. Process Des. Dev., 14, 34, 1975