Issue
HWAHAK KONGHAK,
Vol.22, No.4, 213-223, 1984
유동층 회분반응기 방식에 의한 시트르산 생산
Production of Citric Acid in Fluidized-Bed Batch Reactor System
칼슘 알지네이트 담체에 Candida lipolytica MX 9-11 R 3세포를 포괄시켜 고정화 효모 세포를 만들었다. 유동층 회분 반응기에서 고정화 효모 세포를 사용하여 포도당으로부터 시트르산 생성에 관한 연구를 하였다. 세포량 증가에 필요한 다른 영양소는 넣지 않고 포도당만 사용함으로써 세포 증식을 다소 막을 수 있었다. 유동층 회분 반응기에서 시트르산 생산성은 반응온도, pH, 공기유량속도에 크게 영향을 받았다. 시트르산 생산의 최적 조건은 균일계에서는 26 ℃(Tabuchi), 30 ℃(Nakanishi)와 pH 5(Marchal), pH 6.5(Nakanishi)였으나, 여기서는 28 ℃, pH 6이었다. 공기 유량속도를 증가시키면 시트르산 생산이 증가되었는데 이것은 용존 산소의 증가와 물질전달 저항의 감소에 기인한 것 같다.
유동층 회분 반응기에 공급되는 공기중에 CO2를 어느정도 혼입시켰을 때 시트르산의 생산성이 증가하였다. 최적 CO2의 함량은 16 %(V/V)였다.
Immobilized yeast cell(Candida lipolytica MX 9-11 R3) was prepared by entrapping the whole cell in calcium alginate matrix. The fermentative production of citric acid from glucose was studied using this immobilized yeast cell in a fluidized-bed batch reactor. One could more or less prevent the cell growth using glucose as the sole nutrient and thus eliminating other nutrients necessary for the cell mass doubling. The productivity of citric acid was remarkably influenced by reaction temperature, pH, and air flow rate in fluidized-bed batch reactor. The optimal conditions for the citric acid production were found to be 28 ℃ and pH 6 as compared with those of homogeneous case, i.e. 26 ℃(Tabuchi), 30 ℃(Nakanishi), and pH 5(Marchal), pH 6.5(Nakanishi). The increased air flow rate resulted in an enhanced citric acid production possibly due to the increased dissolved oxygen concentration and the decrease in mass transfer resistance.
The intentional addition of CO2 gas into the air supply to the fluidized-bed batch reactor gave a better citric acid productivity in certain concentration ranges. The optimal CO2 content was found to be 16 %(v/v).