Issue
Korean Chemical Engineering Research,
Vol.61, No.1, 168-174, 2023
α, β-불포화 알데히드의 선택적 수소화 반응성 향상을 위한 전처리 방법
Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes
일반적인 메틸 메타아크릴레이트(methyl methacrylate) 상업 공정의 중간체인 메타아크릴 알데히드(methacryl aldehyde)에는 불순물이 존재한다. 이는 전체 화학 반응의 전환율과 선택도가 크게 저하되는 원인이며 메타아릴 알코 올(methallyl alcohol) 생산성 향상의 주요 문제이다. 본 연구는 다양한 불순물 중에서 반응성 저하의 주요 원인이 산 (acid)임을 발견하였다. 불순물로 존재하는 산은 촉매의 활성을 급격하게 저하시키며, 부반응인 불균일 딜스-알더 반응 (hetero Diels-Alder reaction)이 촉진됨을 확인하였다. 따라서, 메타아크릴 알데히드의 카르보닐기(carbonyl group)를 선 택적으로 수소화하는 반응에서 반응 불순물인 산을 제거하기 위해 전처리 방법을 비교 평가하였고, 생산성을 향상시 키기 위한 효과적인 방법을 제안하였다. 이를 통해 제안된 조건 하에서 최적의 선택적 수소화 반응 조건을 완성하였다
In commercial production processes of methyl methacrylate, there is a methacryl aldehyde as an intermediate or impurities. The existence of impurities is critical factor because of significant decrease of the conversion rate and selectivity of the entire chemical reaction. This study found that an acid was the main cause of the decrease in reactivity among various impurities because an acid rapidly lowers the activity of a catalyst and promotes a side reaction, the hetero Diels-Alder reaction. Therefore, the pretreatment methods with the removal of acid were comparatively evaluated by the selective hydrogenation reaction of the carbonyl group of the reactants. Based on several experimental conditions, we believe that proposed effective pretreatment improves productivity with appropriate economical process.
[References]
  1. https://en.wikipedia.org/wiki/Hydrogenation.
  2. Leilei Z, Maoxiang Z, Aiqin W, Tao Z, Chem. Rev., 120(2), 683, 2020
  3. Bo S, Zhi-Chao C, Zhang-Jie S, Chem. Res., 48(3), 886, 2015
  4. Lee SH, Jeon JH, Kim JC, Ha KS, Korean Chem. Eng. Res., 59(2), 269, 2021
  5. Baek SH, Yoon KH, Shin CH, Korean Chem. Eng. Res., 60(1), 159, 2022
  6. Sukaran SA, Aditya B, J. Catal., 383, 24, 2020
  7. Yasuo K, Setsuko K, Shuichk N, Takaharu O, Kenzk T, Faraday Discuss., 72, 135, 1981
  8. Francisco F, Carmen N, Miguel Y, Tetrahedron: Asymmetry, 26(15-16), 3769, 2015
  9. Xiaocheng L, Tiefeng W, ACS Catal., 10, 2764, 2020
  10. Varadhan K, Basujit C, Chidambaram G, Inorg. Chem., 56(12), 7278, 2017
  11. Bos ANR, Westerterp KR, Chem. Eng. Process., 32, 1, 1993
  12. Yiting G, Jack R, Farbod S, Vladislav G, Zhiyao Z, Scott A, J. Am. Chem. Soc., 143, 9657, 2021
  13. Xiaofeng W, Xinhua L, Peng G, Qingbo L, ACS Catal., 10, 2395, 2020
  14. Sudakar, Gunniya P, Yoon SH, Inorg. Chem., 60, 6881, 2021
  15. Zhiyi S, Shuo W, Wenxing C, J. Mater. Chem. A, 9, 5296, 2021
  16. Sean E, Alen H, Robert, Morris H, Coord. Chem. Rev., 248, 2201, 2004
  17. Odile E, Robert H, New J. Chem., 37, 21, 2013
  18. Kim JS, Korean Chem. Eng. Res., 56(4), 441, 2018
  19. Tuulia H, Anal Bioanal Chem., 394, 743, 2009
  20. Sk J, Debasish G, Transition Met Chem, 34, 937, 2009
  21. Ralph G, Sharon L, Michael E, George M, J. Org. Chem., 46, 2861, 1981
  22. Wataru K, Takaji M, Osamu O, Yasunori I, Kunimori A, Shigeru T, Kenya I, Tohru K, Noboru S, Takao S, Org. Pro. Res. Dev., 16, 166, 2012
  23. Sean EC, Alen H, Robert HM, Coord. Chem. Rev., 248, 2201, 2004
  24. Kim SH, Hong SH, Org. Lett., 18, 212, 2016
  25. Pavan M, Adrew R, Physical Methods in Chemistry and Nano Science, Rice University(2012).
  26. Ferenc J, Jozsef K, Attila B, Agnes K, Angew. Chem.-Int. Edit., 37(7), 969, 1998
  27. Gábor P, József K, Attila B, Gábor L, Levente N, Ferenc J, Can. J. Chem., 79, 635, 2001
  28. Charles AM, Radhika PN, Brian JF, Organometallics, 26, 429, 2007