Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 467-479, 2021
Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors
A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.
[References]
  1. Sun J, Wang Y, ACS Catal., 4, 1078, 2014
  2. Zhang MH, Yu YZ, Ind. Eng. Chem. Res., 52(28), 9505, 2013
  3. Galadima A, Muraza O, J. Ind. Eng. Chem., 31, 1, 2015
  4. Kochar NK, Merims R, Padia AS, Chem. Eng. Prog., 77, 66, 1981
  5. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1, 2011
  6. Ren T, et al., Resour. Conserv. Recycl., 53(12), 653, 2009
  7. Yakovleva IS, et al., Catal. Ind., 8, 152, 2016
  8. Christiansen MA, Mpourmpakis G, Vlachos DG, J. Catal., 323, 121, 2015
  9. Kagyrmanova AP, et al., Chem. Eng. J., 176-177, 188, 2011
  10. Kang M, Dewilde JF, Bhan A, ACS Catal., 5, 602, 2015
  11. Roy S., et al., ACS Catal., 2, 1846, 2012
  12. Chiang H, Bhan A, J. Catal., 271(2), 251, 2010
  13. Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J, Ind. Eng. Chem. Res., 49(21), 10836, 2010
  14. Phillips CB, Datta R, Ind. Eng. Chem. Res., 36(11), 4466, 1997
  15. Phung TK, Busca G, Chem. Eng. J., 272, 92, 2015
  16. Reyniers MF, Marin GB, Annu. Rev. Chem. Biomol. Eng., 5, 563, 2014
  17. DeWilde JF, et al., ACS Catal., 3, 798, 2013
  18. DeWilde JF, Bhan A, Appl. Catal. A: Gen., 502, 361, 2015
  19. Taarning E, et al., Energy Environ. Sci., 4(3), 793, 2011
  20. Gayubo AG, Tarrio AM, Aguayo AT, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 40(16), 3467, 2001
  21. Alexopoulos K, John M, Van der Borght K, Galvita V, Reyniers MF, Marin GB, J. Catal., 339, 173, 2016
  22. Haro P, Ollero P, Trippe F, Fuel Process. Technol., 114, 35, 2013
  23. Becerra J, Figueredo M, Cobo M, J. Environ. Chem. Eng., 5(2), 1554, 2017
  24. Jernberg J, et al., Ethanol Dehydration to Green Ethylene. 2015, Lund: Lund University.
  25. Cameron G, et al., Process Design for the Production of Ethylene from Ethanol. 2012, Philadelphia, PA: University of Pennsylvania.
  26. Seo JH, Chae HJ, Kim TW, Jeong KE, Kim CU, Lee SB, Jeong SY, Korean Chem. Eng. Res., 49(6), 726, 2011
  27. Jasra RV, Tyagi B, Badheka YM, Choudary VN, Bhat TSG, Ind. Eng. Chem. Res., 42(14), 3263, 2003
  28. Fogler HS, Elements of Chemical Reaction Engineering. 1999, New Jersey: Prentice-Hall.
  29. Boudart M, AlChE J., 18(3), 465, 1972
  30. Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58(5), 18, 1966
  31. Seider WD, et al., Product and Process Design Principles: Synthesis, Analysis and Design. 2008, New York, NY: John Wiley & Sons.
  32. Sinnott RK, Chemical Engineering Design. Vol. 6. 2005, New York, NY: Elsevier. 1056.
  33. Hall S, Rules of Thumb for Chemical Engineers. 2012, Oxford, UK: Butterworth-Heinemann.
  34. Douglas JM, Conceptual Design of Chemical Processes. 1988, New York, NY: McGraw-Hill.
  35. Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 41(17), 4216, 2002
  36. Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J, Chem. Eng. J., 167(1), 262, 2011
  37. Gayubo AG, Aguayo AT, Castilla M, Moran AL, Bilbao J, Chem. Eng. Commun., 191(7), 944, 2004
  38. Campesi MA, Mariani NJ, Pramparo MC, Barbero BP, Cadus LE, Martinez OM, Barreto GF, Catal. Today, 176(1), 225, 2011
  39. Nowicki L, Ledakowicz S, Bukur DB, Chem. Eng. Sci., 56(3), 1175, 2001
  40. Todic B, Bhatelia T, Froment GF, Ma WP, Jacobs G, Davis BH, Bukur DB, Ind. Eng. Chem. Res., 52(2), 669, 2013
  41. Yang J, Liu Y, Chang J, Wang YN, Bai L, Xu YY, Xiang HW, Li YW, Zhong B, Ind. Eng. Chem. Res., 42(21), 5066, 2003
  42. Lim HW, Jun HJ, Park MJ, Kim HS, Bae JW, Ha KS, Chae HJ, Jun KW, Korean J. Chem. Eng., 27(6), 1760, 2010
  43. Park N, Park MJ, Ha KS, Lee YJ, Jun KW, Fuel, 129, 163, 2014
  44. Wang F, Luo M, Xiao WD, Cheng XW, Long YC, Appl. Catal. A: Gen., 393(1-2), 161, 2011
  45. Hong Kong Boilers and Pressure Vessels Authority, Code of Practice for Thermal Oil Heaters. 2008, Hong Kong: Hong Kong Labour Department.
  46. Couper JR, Chemical Process Equipment: Selection and Design. 1990, Amsterdam Boston: Elsevier. 755.
  47. Beste A, Overbury SH, J. Phys. Chem. C, 119, 2447, 2015
  48. Guo SY, Yu CL, Gu XH, Jin WQ, Zhong J, Chen CL, J. Membr. Sci., 376(1-2), 40, 2011