Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 450-454, 2021
CdS/ZnS 양자점 기반 플라스틱 섬광체 제작 및 성능평가
Fabrication and Evaluation of CdS/ZnS Quantum Dot Based Plastic Scintillator
현재, 감마 핵종 분석은 주로 무기섬광체 또는 반도체 검출기를 활용하여 여러 분야에 사용되고 있다. 이러한 검출기는 분해능이 좋지만 크기가 제한적이며, 가공성이 낮고 경제성이 플라스틱 섬광체보다 낮다. 따라서, 나노물질인 양자점과 플라스틱섬광체의 장점을 이용하여 양자점 나노물질 기반 플라스틱 섬광체를 개발하였다. 가장 많이 활용되고 있는 Cd계열 물질인 CdS/ZnS 양자점을 플라스틱 매트릭스에 교반하여 제작하였으며, 이를 60Co핵종 대상 계측 실험을 하여 상용플라스틱 섬광체의 성능과 비교 분석하였다. 상용플라스틱 섬광체 대비 CdS/ZnS 양자점 기반 플라스틱 섬광체가 20~30% 높은 효율을 보였다. 이는 의료분야뿐만 아니라 원자력 해체분야에서도 방사능 분석기로 활용 가능할 것으로 판단된다.
Currently, gamma nuclide analysis is mainly used using inorganic scintillators or semiconductor detectors. These detectors have high resolution but there are less economical, limited in size, and low process ability than plastic scintillators. Therefore, quantum dot-based plastic scintillator was developed using the advantages of the quantum dot nanomaterial and the conventional plastic scintillator. In this study, efficient plastic scintillator was fabricated by adding CdS/ZnS based on the most widely used Cd-based nanomaterial in a polystyrene matrix. In addition, the performance of the commercial plastic scintillator was compared and it was analyzed through radiological measurement experiments. The detection efficiency of fabricated plastic scintillator was higher than commercial plastic scintillator, EJ-200. It is believed that this fabricated plastic scintillator can be used as a radioactivity analyzer in the medical and nuclear facility fields.
[References]
  1. Hong SB, Seo BK, Joe DG, Jeong KH, Moon JK, Journal of Radiation Protection 37(4), 202(2012).
  2. Choi WG, Korea Atomic Energy Research Institute Report, KAERI/AR-800, 2008.
  3. Murugadoss G, Rajesh Kumar M, Luminescence, 29(6), 663, 2014
  4. Youn HC, Baral S, Fendler JH, J. Phys. Chem., 92, 6320, 1988
  5. Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, Louis E. Brus, Journal of the American Chemical Society, 112, 1327(1990).
  6. Danek M, Jensen KF, Murray CB, Bawendi MG, Chem Materials., 8(1), 173, 1996
  7. Littau KA, Szajowski PJ, Muller AJ, Kortan AR, Brus LE, J. Phys. Chem., 97(6), 1224, 1993
  8. Wilson WL, Szajowski PF, Brus LE, Science, 262(5137), 1242, 1993
  9. Hines MA, Gnyotsionnest P, J. Phys. Chem., 100(2), 468, 1996
  10. Yang Y, Chen O, Angerhofer A, Cao YC, Journal of the American Chemical Society, 128(38), 12428 (2006).
  11. Bhargava RN, Gallagher D, Hong X, Nurmikko A, Phys. Rev. Lett., 72, 416, 1994
  12. Bhargava RN, J. Lumines., 70, 85, 1996
  13. Chang KS, Journal of the Korea Institute of Military Science and Technology, 13(4), 659 (2010).
  14. Nam JS, Kim YU, Hong SB, Seo BK, New Physics : Sae Mulli, 67(9), 1080, 2017
  15. Park JM, Kim HH, Hwang YS, Kim DH, Park HW, J. Lumines., 146, 157, 2014
  16. Madkour M, Salih T, Al-Sagheer F, Bumajdad A, Optical Materials Express, 69(9), 2857, 2016
  17. Healy MS, Hanson JE, J. Appl. Polym. Sci., 104(1), 360, 2007
  18. Xinmei L, et al., Highly Luminescent Blue Emitting CdS/ZnS Core/shell Quantum Dots via a Single-molecular Precursor for Shell Growth,” 130(3), 909 (2011).