Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 399-409, 2021
염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구
A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O)
백운석을 칼슘/마그네슘 화합물 소재로 활용하기 위해 마이크로웨이브 소성로(950 °C, 60 min)을 이용하여 소성하여 고반응성 경소백운석(CaO·MgO)을 제조하였다. Hydration test(ASTM C 110) 기준에 따라 실험을 실시하였으며 수화반응성 결과, 중 반응성(max 74.1 °C, 5 min)으로 분석 되었다. 경소백운석의 수화 반응에 기초하여 경소백운석과 염(MgCl2·6H2O) (a) 1:1, (b) 1:1.5, (c) 1:2 wt%로 실험을 진행하였다. 염 첨가 비율이 증가 할수록 경소백운석의 MgO가 Mg(OH)2로 증가되는 것을 X-선 회절 분석 결과 확인하였다. 분리 반응 후 칼슘은 CaCl2 용액 상태로 80 °C, 24 시간 동안 교반시켜 흰색 결정체인 CaCl2가 제조 되었다. XRD 분석 결과, CaCl2·(H2O)x(calcium chloride hydrate)로 경소백운석과 염 첨가 반응에 의한 CaO는 CaCl2로 분리 되는 것을 확인하였다. 그리고 CaCl2 용액에 NaOH 첨가 반응으로 순도 99 wt%의 Ca(OH)2 합성하였으며, 합성된 Ca(OH)2를 열처리 과정을 통하여 CaO를 제조하였다. 탄산칼슘을 제조하기 위해 CaCl2 용액에 Na2CO3 첨가 반응으로 CaCO3를 합성하였으며, 형상은 큐빅(cubic) 형태로 순도 99 wt%로 분석 되었다.
In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 °C, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 °C, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 °C, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.
[References]
  1. Hwang DJ, Ryu JY, Park JH, Yu YH, Lee SK, Cho KH, Han C, Lee JD, J. Ind. Eng. Chem., 18(6), 1956, 2012
  2. Hwang DJ, Ryu JY, Park JH, Yu YH, Choi MK, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 19(5), 1507, 2013
  3. Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727, 2014
  4. Hwang DJ, Cho KH, Choi MK, Yu YH, Lee SK, Ahn JW, Lim GI, Han C, Lee JD, Korean J. Chem. Eng., 28(9), 1927, 2011
  5. Bes AM, Ottovon- Guericke University Magdeburg, Germany, 2006(Dr. -Ing. Thesis).
  6. Chatterjee A, Basak T, Ayappa KG, J. AIChE, 44(10), 2302, 1998
  7. Kenkre VM, Skala L, Weiser MW, J. Materials Science, 26, 2483, 1991
  8. Pawel K, Proceedings of the 41st European Microwave Conference, Manchester, UK, 996 (2011).
  9. Clemens J, Saltiel C, Int. J. Heat Mass Transf., 39(8), 1665, 1996
  10. Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307, 2003
  11. Zhao C, Vleugels J, Acta Mater., 48, 3795, 2000
  12. Das S, Mukhopadhyay AK, Bull. Mater. Sci., 32(1), 1, 2009
  13. Metaxas AC, Power Engineering Journal., 5(5), 237 (1991).
  14. Panda SS, Singh V, Upadhyaya A, Scripta Materialia., 54, 2179, 2006
  15. Changhong D, Xianpeng Z, Jinsong Z, Journal of Materials Science, 32, 2469 (1997).
  16. Garcia-Carmona J, Gomez-Morales J, Powder Technology, 130, 307, 2003
  17. Shin BC, Thesis, Department of Chemical Engineering Graduate School, Kangwon National University, Korea(2001).
  18. http://www.samyangcorp.com/CO43/Details/28?searchCate=1.
  19. Mochida Y, Miyazawa K, Tazawa M, J. Soc. Inor. Mater. Japan, 36, 20, 1958
  20. Kasai J, J. Soc. Inor. Mater. Japan, 63, 75, 1968
  21. Nishikawa Y, J. Soc. Inor. Mater. Japan, 92, 7, 1968
  22. Nishino T, J. Soc. Inor. Mater. Japan, 248, 3, 1994
  23. Jackson LC, et al., Kirk-Othmer Encyclopedia of chemical Technology, 3rd ed., Vol. 15, New York, John Wily & Sons, Inc., 675 (1995).
  24. Lacson JG, Cometta S, Yoneyama M, In: Chemical Economics Handbook. Menlo Park, CA, SRI International, 93 (2000).
  25. Hwang DJ, Yu YH, Baek CS, Lee GM, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 30, 309, 2015
  26. Hwang DJ, Yu YH, Korea Chem. Eng. Res., 57(6), 812, 2019
  27. Lee GJ, Kim WB, Kim JY, Korea Chem. Eng. Res., 31(3), 263, 1993
  28. Jeong KS, Park IS, KR patent 10-2015-0060672(2015).
  29. Mun JK, Yun YK, Kwak MH, KR patent 10-2011-0141377(2011).
  30. McIntosh RM, Sharp JH, Wilburn FW, Thermochimica Acta, 165(2), 281, 1990
  31. Rat’ko AI, Ivanets AI, Kulak AI, Inorganic Materials, 47(12), 1372, 2011
  32. Wiedemann HG, Bayer G, Thermochimica Acta, 121, 479, 1987