Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 393-398, 2021
리튬이온전지의 사이클 수명 모델링
Modeling to Estimate the Cycle Life of a Lithium-ion Battery
리튬이온전지의 성능을 최적화하기 위해서는 여러 열화 요소들을 고려한 성능 예측 모델링 기술이 필요하다. 본 연구에서는 리튬이온전지의 사이클 노화로 인한 방전 거동 및 사이클 수명 변화를 수학적으로 모델링하였다. 모델링의 신뢰성을 검증하기 위해 0.25C로 사이클 시험을 진행했으며, 30 사이클 간격으로 진행한 RPT (Reference performance test)를 통해 전기적 거동을 파악하였다. 기존의 리튬이온전지의 사이클 수명 예측 모델에 BOL (Beginning of life)에서 일어나는 현상 중 하나인 Break-in 메커니즘을 반영하여 수명예측 정확도를 개선시켰다. 모델에 근거하여 예측된 사이클 수명 변화는 실제 시험 결과와 잘 일치하였다.
In order to optimize the performance of a lithium-ion battery, a performance prediction modeling technique that considers various degradation factors is required. In this work, mathematical modeling was carried-out to predict the change in discharging behavior and cycle life, taking into account the cycle aging of lithium-ion batteries. In order to validate the modeling, a cycling test was performed at the charge/discharge rate of 0.25C, and discharging behavior was measured through RPT (Reference Performance Test) performed at 30 cycle intervals. The accuracy of cycle life prediction was improved by considering the break-in mechanism, one of the phenomena occurring in the BOL (beginning of life), in the model for predicting the cycle life of lithium-ion batteries. The predicted change in cycle life based on the model was in good agreement with the experimental results.
[References]
  1. Han XB, Ouyang MG, Lu LG, Li JQ, Zheng YJ, Li Z, J. Power Sources, 251, 38, 2014
  2. Doyle M, Fuller TF, Newman J, J. Electrochem. Soc., 140(6), 1526, 1993
  3. Arora P, Doyle M, White RE, J. Electrochem. Soc., 146(10), 3543, 1999
  4. Kwon KH, Shin CB, Kang TH, Kim CS, J. Power Sources, 163(1), 151, 2006
  5. Kim US, Shin CB, Kim CS, J. Power Sources, 180(2), 909, 2008
  6. Kim US, Yi J, Shin CB, Han T, Park S, J. Power Sources, 158, A611, 2011
  7. Kim US, Yi J, Shin CB, Han T, Park S, J. Power Sources, 196(11), 5115, 2011
  8. Kim US, Yi J, Shin CB, Han T, Park S, J. Electrochem. Soc., 160(6), A990, 2013
  9. Yi J, Kim US, Shin CB, Han T, Park S, J. Power Sources, 244, 143, 2013
  10. Yi J, Lee J, Shin CB, Han T, Park S, J. Power Sources, 277, 379, 2015
  11. Yi J, Koo B, Shin CB, Han T, Park S, Comput. Chem. Eng., 99, 31, 2017
  12. Lee J, Yi JC, Yu S, Cho W, Energies, 6(11), 5597, 2013
  13. Tiedemann W, Newman J, J. Electrochem. Soc., 39 (1979).
  14. Newman J, Tiedemann W, J. Electrochem. Soc., 140, 1961, 1993
  15. Gu H, J. Electrochem. Soc., 130, 1459, 1983
  16. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ, J. Power Sources, 97, 13, 2001
  17. Bloom I, Cole BW, Sohn JJ, Jones SA, Polzin EG, Battaglia VS, Henriksen GL, Motloch C, Richardson R, Unkelhaeuser T, Ingersoll D, Case HL, J. Power Sources, 101(2), 238, 2001
  18. Smith K, Saxon A, Keyser M, Lundstrom B, Ziwei Cao and Roc A, American Control Conference, May, Seattle (2017).
  19. Knehr KW, Hodson T, Bommier C, Davies G, Kim A, Steingart DA, Joule, 2(6), 1146, 2018
  20. Wang Y, Satoh M, Arao M, Matsumoto M, Imai H, Nishihara H, Sci. Rep, 10(1), 1, 2020