Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 379-392, 2021
Taxus chinensis로부터 파클리탁셀 정제를 위한 개선된 아세톤-물 분별침전 공정 개발 및 그 동역학 및 열역학적 해석
Development of An Improved Acetone-Water Fractional Precipitation Process for Purification of Paclitaxel from Taxus chinensis and Its Kinetic and Thermodynamic Analysis
본 연구에서는 초음파 캐비태이션 버블와 가스 버블를 이용한 파클리탁셀의 개선된 아세톤-물 분별침전 공정을 개발하였다. 전통적 방법에 비해 침전에 소요되는 시간이 20~25배 단축되었다. 또한 파클리탁셀의 침전물 크기는 3.5~5.5배 감소하였으며 파클리탁셀의 확산 계수는 3.5~6.7배 증가하였다. 초음파 캐비태이션 버블을 이용한 침전의 경우 초음파 파워는 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 가스 버블을 이용한 침전의 경우 가스 유량은 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 열역학적 해석을 통해 개선된 분별침전은 비자발적 발열 공정이었다.
In this study, an improved acetone-water fractional precipitation process for paclitaxel using ultrasonic cavitation bubbles and gas bubbles was developed. Compared to the conventional method, the time required for precipitation has been reduced by 20~25 times. In addition, the particle size of paclitaxel decreased by 3.5~5.5 times and the diffusion coefficient of paclitaxel increased by 3.5~6.7 times. In the case of precipitation using ultrasonic cavitation bubbles, as the ultrasonic power increased and the temperature decreased, the precipitation rate constant increased. In the case of precipitation using gas bubbles, as the gas flow rate increased and the temperature decreased, the precipitation rate constant increased. Thermodynamic parameters revealed the exothermic, irreversible, and nonspontaneous nature of the improved fractional precipitation.
[References]
  1. Park JM, Kim JH, Korean Chem. Eng. Res., 59(1), 106, 2021
  2. Jo JY, Kim JH, Biotechnol. Bioprocess Eng., 24, 818, 2019
  3. Jang YS, Kim JH, Biotechnol. Bioprocess Eng., 24, 529, 2019
  4. Ghorbani M, Pourjafar F, Saffari M, Asgari Y, Meta Gene, 26, 100800, 2020
  5. Sun T, Liu Y, Li M, Yu H, Piao H, Mol. Cell. Probes, 53, 101602, 2020
  6. Choi HK, Son JS, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59, 2002
  7. Pyo SH, Choi HJ, Han BH, J. Chromatogr. A, 1123, 15, 2006
  8. Rao K, Hanuman J, Alvarez C, Stoy M, Juchum J, Davies R, Baxley R, Pharm. Res., 12, 1003, 1995
  9. Park GY, Kim GJ, Kim JH, J. Ind. Eng. Chem., 21, 151, 2015
  10. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 25, 86, 2020
  11. Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965, 2019
  12. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985, 2004
  13. Jeon KY, Kim JH, Process Biochem., 44(7), 736, 2009
  14. Kang I, Kim JH, Sep. Purif. Technol., 99, 14, 2012
  15. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Biotechnol. Lett., 22(22), 1753, 2000
  16. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37(7), 679, 2002
  17. Jeon SI, Mun S, Kim JH, Process Biochem., 41(2), 276, 2006
  18. Lee JY, Kim JH, Sep. Purif. Technol., 103, 8, 2013
  19. Jeon YL, Kim JH, Korean J. Chem. Eng., 30(10), 1954, 2013
  20. Lee JY, Kim JH, Process Biochem., 47(12), 2388, 2012
  21. Lee CG, Kim JH, Process Biochem., 49(8), 1370, 2014
  22. Seo HW, Kim JH, Process Biochem., 87, 238, 2019
  23. Jordens J, Coker ND, Gielen B, Gerven TV, Braeken L, Ultrason. Sonochem., 26, 64, 2015
  24. Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151, 1968
  25. Sim HA, Lee JY, Kim JH, Sep. Purif. Technol., 89, 112, 2012
  26. Kim JH, Korean Chem. Eng. Res., 58, 273, 2020
  27. Yook KW, Kim JH, Biotechnol. Bioprocess Eng., 23, 532, 2018
  28. Kang HJ, Kim JH, Process Biochem., 99, 316, 2020
  29. Park JN, Kim JH, Process Biochem., 53, 244, 2017
  30. Dalvi SV, Dave RN, Int. J. Pharm., 387, 172, 2010
  31. Kalu PN, Waryoba DR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 464, 68, 2007
  32. Yang JW, Kim JH, Korean Chem. Eng. Res., 57(2), 210, 2019
  33. Cho DN, Kim JH, Korean Chem. Eng. Res., 58(1), 127, 2020
  34. Park SH, Kim JH, Korean Chem. Eng. Res., 58(1), 113, 2020
  35. Kang SS, Kim JH, Biotechnol. Bioprocess Eng., 25, 336, 2020
  36. Kim HS, Kim JH, Korean Chem. Eng. Res., 57(2), 219, 2019
  37. Nam HW, Kim JH, Appl. Chem. Eng., 31(2), 208, 2020
  38. Saha P, Chowdhury S, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
  39. Kim TW, Kim JH, Biotechnol. Bioprocess Eng., 21, 751, 2016
  40. Wohgemuth K, Kordylla A, Ruether F, Schembecker G, Chem. Eng. Sci., 64(19), 4155, 2009
  41. Schueller BS, Yang RT, Ind. Eng. Chem. Res., 40, 4912, 2011
  42. Royset J, Ryum N, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 396, 409, 2005
  43. Lee CG, Kim JH, Process Biochem., 59, 216, 2017
  44. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513, 2019
  45. Lee SH, Kim JH, Process Biochem., 76, 187, 2019
  46. Bang SY, Kim JH, Biotechnol. Bioprocess Eng., 22, 620, 2017
  47. Shin HS, Kim JH, Process Biochem., 51(7), 917, 2016
  48. Dogan M, Abak H, Alkan M, J. Hazard. Mater., 164(1), 172, 2009
  49. Celekli A, Ilgun G, Bozkurt H, Chem. Eng. J., 191, 228, 2012