Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 359-365, 2021
부유 분진의 정전압에 의한 최소착화에너지 위험성평가
Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles
본 연구에서는 분진의 착화 특성 및 정전기 위험성 평가법을 실험적으로 조사하였다. 착화에너지 시험은 PE(HD), PE(LD), PMMA 분진에 대해 MIKE-3장치를 사용하여 실시하였다. PE (HD)의 경우 약 8 ms의 일정 시간 경과 후에 분진운의 착화 화염이 형성되고, 착화원 중심부에서는 화염 핵이 관찰되지 않았다. 분진의 분산 횟수가 증가함에 따라 정전압이 증가하고 분진 농도에 따른 정전압 발생 증가율은 PMMA, PE(LD), PE (HD) 순으로 가장 높았다. PE(HD)분진의 분산 조건이 정전압에 미치는 영향을 조사하였으며, 분산 횟수가 많아질수록 정전압이 증가하였고 동일한 분산 횟수에서는 분진 농도가 높아질수록 정전압이 증가하였다. 정전기 착화에 의한 화재폭발사고 예방을 위한 안전 정전압은 PE(HD), PE(LD)-1, PE(LD)-2, PMMA에 있어서 각각 2.58, 44.72, 25.82, 8.16 kV로 추정되었다. 정전압 측정자료를 사용하여 정전기 착화 위험성을 효율적으로 조사하여 최소착화에너지를 추정하는 방법을 제안하였다.
We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.
[References]
  1. Database for Major industrial accidents, Korea Occupational Safety and Health Agency (1988~2020).
  2. Han OS, KOSHA, 2019-OSHRI-1641, 23-28 (2019).
  3. Jonassen NM, Electrostatic Discharge Symposium Proceedings, 331-337(1995).
  4. Juliusz B, Gajewski, J. Electrostatics, 72, 192, 2014
  5. Yamaguma M, Kodama T, IEEE Trans. on Insdutry Applications, 40, 451 (2004).
  6. Ohsawa A, Ichikawa N, J. Physics, 418, 1, 2013
  7. Olsen W, Arntzen BJ, Eckhoff RK, J. Electrostatics, 74, 66, 2015
  8. EN 13821, “Potentially Explosive Atmospheres - Explosion Prevention and Protection-Determination of minimum ignition energy of dust/air mixtures,” (2002).
  9. ASTM, E 2019-03. West Conshohocken, PA: ASTM International (2007).
  10. IEC 61241-2-3, Electrical Apparatus for use in the Presence of Combustible Dust" (1994).
  11. Gan B, Gao W, Jianga H, Li Y, Zhang Q, Bi M, J. Powder Technology, 328, 345, 2018
  12. Nifuku M, Katoh H, J. Loss Prev. Process Ind., 14(6), 547, 2001