Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 339-344, 2021
화학적/기계적 열화 병행방법에 의한 PEMFC 고분자막 내구성 평가
Durability Test of PEMFC Membrane by the Combination of Chemical/Mechanical Degradation
고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC) 내구성 향상을 위해서 고분자막의 내구성을 짧은 시간에 정확히 평가하는 것은 중요하다. 최근에 미국 에너지부(Department of Energy, DOE)에서 고분자막의 화 학적 내구성과 기계적 내구성을 결합해 평가하는 프로토콜을 보고하였다. 이 프로토콜은 개회로전압(Open Circuit Voltage, OCV) 유지 상태에서 가습/건조를 반복함으로써 화학적/기계적 열화를 고분자막에 가한다. OCV 변화 반복에 따른 전극 열화의 영향을 많이 받고 평가시간이 장시간인 점들이 이 프로토콜의 문제점이다. 본 연구에서 DOE 프로토콜의 다른 조건들은 그대로 두고 양극(Cathode) 가스로 공기 대신 산소를 사용함으로써 내구평가 시간을 408시간에서 144시간으로 단축시킬 수 있었다. 전압변화 사이클 횟수를 1/3로 감소시킴으로써 전압변화 사이클에 의한 전극열화는 종료 시점에서 공기에 비해 산소 사용 시 1/12로 감소시켜서, 고분자막 내구 평가를 보다 정확히 할 수 있게 하였다.
In order to improve the PEMFC (Proton Exchange Membrane Fuel Cell) durability, it is important to accurately evaluate the durability of the membrane in a short time. Recently, DOE (Department of Energy) reported a protocol that combines the chemical and mechanical durability of membranes to evaluate them effectively. This protocol applies chemical/mechanical deterioration to the membrane by repeating wet/dry while OCV (Open Circuit Voltage) holding. The problem of this protocol is that it is highly affected by electrode degradation due to change cycles in OCV and that the evaluation time is long. By using oxygen instead of air as the cathode gas while leaving the other conditions of the DOE protocol as it is, the durability evaluation time could be reduced from 408 hours to 144 hours. By reducing the number of voltage change cycles to 1/3, the electrode degradation due to the voltage change cycle was reduced to 1/12 when oxygen was used compared to air at the end, thereby enabling more accurate evaluation of polymer membrane durability.
[References]
  1. Wang GJ, Yu Y, Liu H, Gong CL, Wen S, Wang XH, Tu ZK, Fuel Process. Technol., 179, 203, 2018
  2. Department of Energy, https://www.energy.gov(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People’s Republic of China, http://en.most.gov.cn/eng/index.htm(2016).
  6. U. S. DOE Fuel Cell Technologies Office, Section 3.4 Fuel Cells, p. 1(2016).
  7. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872, 1993
  8. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  9. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  10. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  11. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104, 2005
  12. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  13. Wilkinson, D. P. and St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  14. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  15. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, “Doe Cell Component Accelerated Stress Test Protocols For Pem Fuel Cells.”
  16. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., January 30(2014).
  17. Mukundan R, 2016 DOE Fuel Cell Technologies Office Annual Merit Review, June 8th(2016).
  18. Mukundan R, Baker AM, Kusoglu A, Beattie P, Knights S, Weber AZ, Borup RL, J. Electrochem. Soc., 165(6), F3085, 2018
  19. Mench MM, Emin CK, Veziroglu TN, Polymer Electrolyte Fuel Cell Degradation, Academic Press, Oxford, Waltham, MA, 64-77(2012).
  20. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  21. Lim DH, Oh SH, Jung SG, Jeong JH, Park KP, Korean Chem. Eng. Res., 59(1), 16, 2021