Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 326-332, 2021
수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성
Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis
본 연구에서는 수열 합성법을 이용하여 나노 실리콘이 포함된 구형의 탄소 복합체를 합성하고, 석유계 피치로 코팅하여 제조된 음극 소재의 전기화학 특성을 조사하였다. 수크로스의 몰 농도를 변화시켜 수열합성한 후, 유기 용매로THF를 사용하여 피치로 코팅된 음극 복합소재를 제조하였다. 제조된 음극 소재는 SEM, EDS, XRD 및 TGA를 사용하여 물리적 특성을 분석하였으며, 1.0M LiPF6 (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해액에서 사이클, 율속, 순환전압전류 및 임피던스 테스트를 통해 리튬이차전지의 전기화학 성능을 조사하였다. 1.5 M의 수크로스와 피치를 사용하여 제조된 실리콘/탄소 소재는 구형 형태를 보였으며, 1756 mAh/g의 높은 초기 용량, 50 사이클 후 82 %의 용량 유지율 및 2 C/0.1 C에서 81%의 우수한 속도 특성을 확인할 수 있었다.
In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.
[References]
  1. Kobayashi N, Inden Y, Endo M, J. Power Sources, 326, 235, 2016
  2. Lee SH, Lee JD, Korean Chem. Eng. Res., 56(4), 561, 2018
  3. Zhao C, Wada T, De Andrade V, Gursoy D, Kato H, Chen-Wiegart YCK, Nano Energy, 52, 381, 2018
  4. Yang T, Tian X, Li X, Wang K, Liu Z, Guo Q, Song Y, Chem. Eur. J., 23(9), 2165, 2017
  5. Wang YX, Chou SL, Kim JH, Liu HK, Dou SX, Electrochim. Acta, 93, 213, 2013
  6. Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM, J. Power Sources, 176(1), 353, 2008
  7. Lee SH, Lee JD, Korean Chem. Eng. Res., 56(4), 561, 2018
  8. Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320, 2018
  9. itirici MM, Antonietti M, Thomas A, Chem. Mater., 18(16), 3808, 2006
  10. Hu YS, Demir-Cakan R, Titirici MM, Muller JO, Schlogl R, Antonietti M, Maier J, Angew. Chem.-Int. Edit., 47(9), 1645, 2008
  11. Shen T, Xia XH, Xie D, Yao ZJ, Zhong Y, Zhan JY, Whang DH, Wu JB, Wang XL, Tu JP, J. Mater. Chem. A, 5(2), 11197, 2017
  12. Shin HJ, Hwang JY, Kwon HJ, Kwak WJ, Kim SO, Kim HS, Jung HG, ACS Sustain. Chem. Eng., 8(37), 14150, 2020
  13. Han YJ, Hwang JU, Kim KS, Kim JH, Lee JD, Im JS, J. Ind. Eng. Chem., 73, 241, 2019
  14. Choi SH, Nam G, Chae S, Kim D, Kim N, Kim WS, Ma J, Sung J, Han MS, Ko M, Lee H W, Cho J, Adv. Eng. Mater., 9(4), 180312, 2019
  15. Zheng M, Liu Y, Xiao Y, Zhu Y, Guan Q, Yuan D, Zhang J, J. Phys. Chem. C, 113(19), 8455, 2009
  16. Jeong S, Li XL, Zheng JM, Yan PF, Cao RG, Jung HJ, Wang CM, Liu J, Zhang JG, J. Power Sources, 329, 323, 2016
  17. Karkar Z, Guyomard D, Roue L, Lestriez B, Electrochim. Acta, 258, 453, 2017
  18. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem. C, 115, 13487, 2011
  19. Jo YJ, Lee JD, Korean J. Chem. Eng., 36(10), 1724, 2019
  20. Cakan RD, Titirici MM, Antonietti M, Cui G, Maier J, Hu YS, Chem. Commun., 32, 3759, 2008
  21. Zuo PJ, Yin GP, Yang ZL, Wang ZB, Cheng XQ, Jia DC, Du CY, Mater. Chem. Phys., 115(2-3), 757, 2009
  22. Shen T, Xia XH, Xie D, Yao ZJ, Zhong Y, Zhan JY, Wang DH, Wu JB, Wang XL, Lu JP, J. Mater. Chem. A, 5(22), 11197, 2017
  23. Li M, Hou XH, Sha YJ, Wang J, Hu SJ, Liu X, Shao ZP, J. Power Sources, 248, 721, 2014