Issue
Korean Chemical Engineering Research,
Vol.59, No.3, 305-315, 2021
교합형 동방향 이축압출기의 스크류 조합에 대한 고찰
A Review on the Screw Configuration of Intermeshing Co-rotating Twin Screw Extruder
교합형 동방향이축압출기는 고분자재료의 컴파운딩에 주로 사용되는 기계이다. 이축압출기는 가공하는 재료와 생산제품에 적합한 스크류 조합을 설계하여 품질과 생산성이 양호한 컴파운딩공정을 구축할 수 있다. 스크류조합을 구성하는 스크류와 니딩 엘리먼트의 종류, 형상 및 사양에 대하여 정리하였고, 각각의 엘리먼트가 조합될 때 고분자 수지의 가공성에 미치는 영향에 대하여 알아보았다. 범용수지의 대량생산에 보편적으로 적용되는 스크류 조합의 원리를 설명하였고, 피딩, 용융혼련 및 미터링영역에 적합한 스크류조합의 방향과 사례를 나열하였다. 액상첨가제나 무기필러의 사이드피딩, 반응압출, 탈기공정, 밝은 색상과 투명도가 요구되는 제품의 생산 및 겉보기비중이 낮은 재료의 가공 등 각각의 경우에 맞는 스크류조합의 방향과 원리를 제시하였다.
An intermeshing corotating twin screw extruder is mainly used for compounding polymeric materials. Twin screw extruder can adopt modular-type screw configurations, which directly controls the quality and productivity of the products. The types, shapes, and specifications of the screw and kneading elements are summarized, and the effects of screw configuration on the processabiliy of the materials are discussed. The principles of screw configuration universally applied to mass production of general-purpose resins are explained, and the guidelines of screw combination according to the roles of feeding, melt mixing, and metering zones are listed. The strategies of screw combination suitable for various cases, such as side feeding of liquid additives or inorganic fillers, reactive extrusion, devolatilization process, production of products requiring bright color and transparency, and processing of materials with low apparent specific gravity, are presented.
[References]
  1. White JL, Twin Screw Extrusion. Hanser Publishers, 1993.
  2. Mascia L, The Role of Additives in Plastics, Edward Arnold, 1972.
  3. Mascia L, Xanthos M, Adv. Polym. Technol., 11, 237, 1992
  4. Xanthos M, Functional Fillers for Plastics, Wiley-VCH, 2005.
  5. Kumar A, Sharma K, Dixit AR, J. Mater. Sci., 55(7), 2682, 2020
  6. Rauwendaal C, Polymer Extrusion. Hanser Publishers, 1990.
  7. Jongbloed HA, Kiewiet JA, Vandijk JH, Janssen LP, Polym. Eng. Sci., 35(19), 1569, 1995
  8. Noriega E, Rauwendaal C, Troubleshooting the Extrusion Process, Hanser Publishers, 2010.
  9. Villmow T, Kretzschmar B, Potschke P, Compos. Sci. Technol., 70, 2045, 2010
  10. Kang MS, Kang BY, Sim HS, Son JM, Lee KH, Park M, Polym. Korea, 35(2), 99, 2011
  11. Lekube BM, Purgleitner B, Renner K, Burgstaller C, Polym. Eng. Sci., 59(8), 1552, 2019
  12. Villmow T, Potschke P, Pegel S, Haussler L, Kretzschmar B, Polymer, 49(16), 3500, 2008
  13. Todd DB, Int. Polym. Process., 8, 113, 1993
  14. Rauwendaal C, SPE-ANTEC Tech. Papers, 51, 2232, 1993
  15. Busby ML, McCullough TW, Hughes KR, Kirk RO, SPE-ANTEC Tech. Papers, 54, 3571, 1996
  16. Shih CK, Tynan DG, Denelsbek DA, Polym. Eng. Sci., 31, 1670, 1991
  17. Gogos CC, Tadmor Z, Kim MH, Adv. Polym. Technol., 17(4), 285, 1998
  18. Todd DB, Irving HF, Chem. Eng. Prog., 65, 84, 1969
  19. Todd DB, Int. Polym. Process., 5, 143, 1991
  20. Goffart D, Vanderwal DJ, Klomp EM, Hoogstraten HW, Janssen LP, Breysse L, Trolez Y, Polym. Eng. Sci., 36(7), 901, 1996
  21. Vanderwal DJ, Goffart D, Klomp EM, Hoogstraten HW, Janssen LP, Polym. Eng. Sci., 36(7), 912, 1996
  22. Bawiskar S, White JL, Polym. Eng. Sci., 38(5), 727, 1998
  23. Rauwendaal C, Polym. Eng. Sci., 21, 1092, 1981
  24. Bawiskar S, White JL, Int. Polym. Proc., 12, 331, 1997
  25. Bawiskar S, White JL, Int. Polym. Proc., 10, 105, 1995
  26. Yacu WA, J. Food Process Eng., 8, 1, 1985
  27. Potente H, Melisch U, Int. Polym. Process., 11(2), 101, 1996
  28. Lewandowski A, Wilczynski KJ, Nastaj A, Wilczynski K, Polym. Eng. Sci., 55(12), 2838, 2015
  29. Potente H, Melisch U, Palluch KP, Int. Polym. Process., 11(1), 29, 1996
  30. Xanthos M, Reactive Extrusion: Principles and Practice. Hanser Publishers, 1992.
  31. Beyer G, Hopmann C, Reactive Extrusion: Principles and Applications. Wiley-VCH, 2018.
  32. Lee SM, Park JC, Lee SM, Ahn YJ, Lee JW, Korea-Aust. Rheol. J., 17(2), 87, 2005
  33. Al-Itry R, Lamnawar K, Maazouz A, Eur. Polym. J., 58, 90, 2014
  34. Todd DB, Polym. Eng. Sci., 15, 437, 1975
  35. Poulesquen A, Vergnes B, Cassagnau P, Michel A, Carneiro OS, Covas JA, Polym. Eng. Sci., 43(12), 1849, 2003
  36. Poulesquen A, Vergnes B, Polym. Eng. Sci., 43(12), 1841, 2003
  37. Collins GP, Denson CD, Astarita G, Polym. Eng. Sci., 23, 323, 1983
  38. Collins GP, Denson CD, Astarita G, AIChE J., 31, 1288, 1985
  39. Biesenberger JA, Dey SK, Brizzolara J, Polym. Eng. Sci., 30, 1493, 1990
  40. Foster RW, Lindt JT, Polym. Eng. Sci., 30, 424, 1990
  41. Wang NH, Sakai T, Hashimoto N, Int. Polym. Process., 10(4), 296, 1995
  42. Wang NH, Sakai T, Hashimoto N, Int. Polym. Proc., 13, 27, 1998
  43. White JL, Keum J, Jung H, Ban K, Bumm S, Polym. Plast. Technol. Eng., 45, 539, 2006
  44. Foster RW, Lindt JT, Polym. Eng. Sci., 29, 178, 1989
  45. Foster RW, Lindt JT, Polym. Eng. Sci., 30, 621, 1990
  46. Ohara M, Sasai Y, Umemoto S, Obata Y, Sugiyama T, Tanifuji S, Kihara S, Taki K, Polymers, 12, 2728, 2020
  47. Breuer O, Sundararaj U, Polym. Compos., 25, 630, 2004
  48. McNally T, Potschke P, Polymer-carbon Nanotube Composites, 2011.
  49. Mohan VB, Lau K, Hui D, Bhattacharyya D, Compos. Part B-Eng., 142, 200, 2018
  50. Kasaliwal GR, Pegel S, Goldel A, Potschke P, Heinrich G, Polymer, 51(12), 2708, 2010
  51. Novais RM, Simon F, Paiva MC, Covas JA, Compos. Part A-Appl. S., 43, 2189, 2012
  52. Muller MT, Krause B, Kretzschmar B, Potschke P, Compos. Sci. Technol., 71, 1535, 2011
  53. Bangarusampath DS, Ruckdaschel H, Altstadt V, Sandler JKW, Garray D, Shaffer MSP, Polymer, 50(24), 5803, 2009
  54. Verma P, Saini P, Malik RS, Choudhary V, Carbon, 89, 308, 2015
  55. Jiang ZY, Hornsby P, McCool R, Murphy A, J. Appl. Polym. Sci., 123(5), 2676, 2012
  56. Chowreddy RR, Nord-Varhaug K, Rapp F, J. Mater. Sci., 53(9), 7017, 2018
  57. Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ, Carbon, 44, 778, 2006
  58. Arrigo R, Malucelli G, Materials, 13, 2771, 2020