Issue
Korean Chemical Engineering Research,
Vol.59, No.2, 276-280, 2021
왕복요동 교반조의 자유 표면에서의 산소흡수속도
Oxygen Transfer Rate from Liquid Free Surface in Reciprocally Shaking Vessel
왕복 요동 교반조의 액체 표면에서의 산소 전달 속도에 대해 연구하였다. 왕복 요동 교반조의 소요 동력은 선회요동 교반조와는 달리 요동 주파수에 비례하지 않았으며, 교반조 내의 유동양상이 선회요동의 선회류와는 다른 좌우 물결류인 관계로 어떤 진동수에서 갑자기 액면이 크게 흔들리며 움직이는 양상을 보이며. 3 s-1 이상의 요동 주파수부터는 소요 동력이 선회요동 교반조보다 적어지는 등 요동 주파수가 소요 동력에 미치는 영향은 매우 복잡하였지만, 생성되는 회전류의 범위에서의 왕복 요동 교반조 소요 동력은 회전 요동 교반조에 대해 보고된 식으로 상관시킬 수 있었다. 왕복요동 교반조에서의 kLa (물질이동 용량계수) 역시 교반 소요 동력이 단순한 형태로 소비되지 않았기 때문에 주파수의 증가에 따라 선형으로 증가하는 선회요동 교반조의 kLa와는 달리 복잡한 형태로 증가하였다. 왕복요동 교반의 kLa가 선회요동 교반의 kLa보다 컸으며, kLa값이 커질수록 그 차이도 급격히 커졌다. 결과적으로 왕복 요동에서의 산소 전달 속도는 회전 요동보다 컸으며, 단위 부피당 소요 동력과 상관시킬 수 있었다.
The oxygen transfer rate at the liquid surface of the reciprocally shaking vessel was studied. The required power of the reciprocally shaking vessel was not proportional to the shaking frequency, unlike the rotational shaking vessel, and the liquid level suddenly fluctuated greatly at a certain frequency as the flow pattern in the vessel was a left and right wave flow different from that of the rotational shaking that has a rotational flow. The effect of the shaking frequency on the required power in the reciprocally shaking vessel was very complex, such as less power required than the rotational shaking vessel when the shaking frequency is more than 3 s-1, but the required power for the range of the generated rotational flow in the reciprocally shaking vessel could be correlated with the equation that was reported for the rotational shaking vessel. The kLa (mass transfer capacity coefficient) in the reciprocally shaking vessel also increased in a complex pattern because the required power for shaking was not consumed in a simple pattern, unlike kLa in the rotational shaking vessel, which increases linearly with increasing frequency. The kLa of the reciprocally shaking vessel was larger than the kLa of the rotational shaking vessel, and as the kLa value increased, the difference between them increased sharply. As a result, the oxygen transfer rate in the reciprocal motion was greater than that of the rotational motion, and could be correlated with the required power per unit volume.
[References]
  1. Anderlei T, Buchs J, Biochem. Eng. J., 7, 157, 2001
  2. Buchs J, Lotter S, Milbradt C, Biochem. Eng. J., 7, 135, 2001
  3. Liu CM, Hong LN, Biochem. Eng. J., 7, 121, 2001
  4. Mrotzek C, Anderlei T, Henzler HJ, Buchs J, Biochem. Eng. J., 7, 107, 2001
  5. Kato Y, Hiraoka S, Tada Y, Hirose K, Buchs J, J. Chem. Eng. Jpn., 36(6), 663, 2003
  6. Kato Y, Hiraoka S, Tada Y, Sato K, Ohishi T, J. Chem. Eng. Jpn., 30(2), 362, 1997
  7. Kato Y, Hiraoka S, Tada Y, Nomura T, Can. J. Chem. Eng., 76(3), 441, 1998
  8. Calderbank PH, Moo-Young MB, Chem. Eng. Sci., 16, 39, 1961
  9. Kato Y, Hiraoka S, Tada Y, Koh ST, Lee YS, Trans. IChemE., 74, 451, 1996
  10. Sogabe K, Shigeta T, Shibata H, Journal J.S.M.E., 79, 305, 1976
  11. Kato Y, Hiraoka S, Tada Y, Hirose K, Buchs J, J. Chem. Eng. Jpn., 36(6), 663, 2003