Issue
Korean Chemical Engineering Research,
Vol.59, No.2, 269-275, 2021
메탄 부분산화 반응을 위한 고분산된 팔라듐-니켈 촉매 합성 및 반응
Development of the Highly Dispersed Palladium-Nickel Catalysts for Catalytic Partial Oxidation of Methane
메탄의 부분 산화반응을 위해 규칙적인 메조기공을 갖는 실리카를 지지체로 한 니켈 촉매를 제조하였다. 니켈 플레이팅(Nickel plating) 방법을 이용하여 촉매 제조 시 기존 함침 촉매 제조법과 달리 니켈이 실리카 표면에 도포된다. 이때 니켈이 고분산 되어 안정적인 니켈입자를 형성하게 된다. 니켈 플레이팅 촉매의 경우, TEM-EDS 분석에서 니켈이 매우 고분산 된 것을 확인할 수 있었다. 이러한 고분산된 촉매로 메탄 부분산화 반응 시 기존 함침촉매와는 달리 니켈의 소결과 탄소침적이 상대적으로 적어 촉매의 비활성화가 매우 낮았다. 팔라듐은 환원 조촉매로서의 역할을 하여, 메탄전환율과 생성된 합성가스의 H2/CO 비 관점에서 우수한 반응 성능을 보이는 것을 확인 할 수 있었다.
In this study, ordered mesoporous silica-supported Ni catalysts were prepared for catalytic partial oxidation of methane (CPOM) by using electroless nickel plating method. Unlike conventionally impregnated catalysts, the electrolessly-plated nickel catalyst showed that nickel was highly dispersed and formed stably on silica-supported surface. It was verified by TEM-EDS analysis. During the activity tests, the electrolessly-plated nickel was barely sintered and the amount of carbon deposition was very small. Consequently, the catalyst was far less deactivated, while the sintering was significantly observed in the cases of the catalysts prepared by the conventional impregnation method. Regarding the palladium-promoted catalysts, the reducibility of nickel was increased, and the reaction performances were enhanced in terms of CH4 conversion and H2/CO ratio of produced syngas.
[References]
  1. Khodakov AY, Chu W, Fongarland P, Chem. Rev., 107(5), 1692, 2007
  2. Dry, Mark E, Catalysis Today, 71(3-4), 227, 2002
  3. Wood, David A, Nwaoha C, Towler BF, Journal of Natural Gas Science and Engineering 9, 196 (2012).
  4. Taifan W, Baltrusaitis J, Appl. Catal. B: Environ., 198, 525, 2016
  5. Souza MMVM, Schmal M, Appl. Catal. A: Gen., 281(1-2), 19, 2005
  6. Jianguo X, Froment GF, AIChE J., 35(1), 88, 1989
  7. Enrique I, Soled SL, Fiato RA, J. Catal., 137(1), 212, 1992
  8. Li K, Fu Q, Flytzani-Slephanopoulos M, Appl. Catal. B: Environ., 27(3), 179, 2000
  9. Chengxi Z, et al., Chem. Commun., 49(82), 9383, 2013
  10. Roya DN, et al., Catalysis Science & Technology, 2(12), 2476 (2012).
  11. Damyanova S, Pawelec B, Arishtirova K, Fierro JLG, Sener C, Dogu T, Appl. Catal. B: Environ., 92(3-4), 250, 2009
  12. da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FB, J. Catal., 318, 67, 2014
  13. Horiguchi J, Kobayashi Y, Kobayashi S, Yamazaki Y, Omata K, Nagao D, Konno M, Yamada M, Appl. Catal. A: Gen., 392(1-2), 86, 2011
  14. Ding CM, Liu WL, Wang JW, Liu P, Zhang K, Gao XF, Ding GY, Liu SB, Han YL, Ma XS, Fuel, 162, 148, 2015
  15. AAPG Bull., Morris SM, Fulvio PF, Jaroniec M, Journal of the American Chemical Society 130(45), 15210 (2008)
  16. Chengxi Z, et al., Chem. Commun., 49(82), 9383, 2013
  17. Xia WS, Hou YH, Chang G, Weng WZ, Han GB, Wan HL, Int. J. Hydrog. Energy, 37(10), 8343, 2012
  18. Horiguchi J, Kobayashi Y, Kobayashi S, Yamazaki Y, Omata K, Nagao D, Konno M, Yamada M, Appl. Catal. A: Gen., 392(1-2), 86, 2011
  19. Guo SS, Wang JW, Ding CM, Duan QL, Ma Q, Zhang K, Liu P, Int. J. Hydrog. Energy, 43(13), 6603, 2018
  20. Goncalves RV, Vono LLR, Wojcieszak R, Dias CSB, Wender H, Teixeira-Neto E, Rossi LM, Appl. Catal. B: Environ., 209, 240, 2017
  21. Wu ZJ, Ge SH, Zhang MH, Li W, Tao KY, J. Colloid Interface Sci., 330(2), 359, 2009
  22. Shishido T, Sukenobu M, Morioka H, Kondo M, Wang Y, Takaki K, Takehira K, Appl. Catal. A: Gen., 223(1-2), 35, 2002
  23. Hui L, et al., Chem. Mater., 20(12), 3936, 2008
  24. Bianca F, et al., Microporous Mesoporous Mater., 210, 86, 2015
  25. Liu CJ, et al., ChemCatChem, 3(3), 529, 2011
  26. Damyanova S, Pawelec B, Arishtirova K, Fierro JLG, Sener C, Dogu T, Appl. Catal. B: Environ., 92(3-4), 250, 2009
  27. Steinhauer B, Kasireddy MR, Radnik J, Martin A, Appl. Catal. A: Gen., 366(2), 333, 2009
  28. Yoshida K, Okumura K, Miyao T, Naito S, Ito S, Kunimori K, Tomishige K, Appl. Catal. A: Gen., 351(2), 217, 2008