Issue
Korean Chemical Engineering Research,
Vol.59, No.2, 260-268, 2021
Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption
Adsorption is the most promising technology used to adsorb CO2 to reduce its concentration in the atmosphere due to its functional effectiveness. Various porous materials have been extensively synthesized to boost CO2 adsorption efficiency, for example, zeolite. Here, we report the synthesis process of zeolite adsorbent impregnated with amine, combining the benefit of these two substances. We compared conventional heating with microwave-assisted heating by varying concentrations of monoethanolamine in methanol (10% v/v and 40% v/v) as a liquid solution. The results showed that monoethanolamine impregnation helps significantly increase adsorption capacity, where adsorption occurs as a physisorption and not as chemisorption due to the adsorbent’s steric hindrance effect. The highest adsorption capacity of 0.3649 mmol CO2 / gram adsorbent was reached by microwave exposure for 10 minutes. This work also reveals that a decrease in CO2 adsorption capacity was observed at a longer exposure period, and it reached a constant 40-minute adsorption rate. Impregnating activated zeolite with 40% monoethanolamine for 10 minutes in addition to microwave exposure (0.8973 mmol CO2 / gram adsorbent) is the maximum adsorption ability achieved.
[References]
  1. Olivier J, Peters J, PBL Netherlands Environ. Assess. Agency (2018).
  2. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc. (2013).
  3. Mahi MR, Mokbel I, Negadi L, Dergal F, Jose J, J. Mol. Liq. (2019).
  4. Sazali N, Wan Salleh WN, Ismail AF, Ismail NH, Kadirgama K, Rev. Chem. Eng. (2019).
  5. Ansaloni L, Salas-Gay J, Ligi S, Baschetti MG, J. Memb. Sci. (2017).
  6. Yu X, Yang J, Yan J, Tu ST, Handb. Clean Energy Syst., 2015.
  7. Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sustain. Energy Rev. (2019).
  8. Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki, Suib S, Srivastava R, ACS Appl. Mater. Interfaces. (2019).
  9. Porter RTJ, Fairweather M, Kolster C, Mac Dowell N, Shah N, Woolley RM, Int. J. Greenh. Gas Control (2017).
  10. Yang H, Fan S, Lang X, Wang Y, Nie J, Chinese J. Chem. Eng. (2011).
  11. Idem R, Supap T, Shi H, Gelowitz D, Ball M, Campbell C, Tontiwachwuthikul P, Int. J. Greenh. Gas Control. (2015).
  12. Lee SC, Hsieh CC, Chen CH, Chen YS, Aerosol Air Qual. Res. (2013).
  13. Giordano L, Roizard D, Favre E, Int. J. Greenh. Gas Control (2018).
  14. Gao F, Wang S, Chen G, Duan J, Dong J, Wang W, Adsorption (2020).
  15. Krishnamurthy S, Blom R, Ferrari MC, Brandani S, Adsorption (2020).
  16. Unveren EE, Monkul BO, Sarioglan S, Karademir N, Alper E, Petroleum, 3, 37, 2017
  17. Lee SY, Park SJ, J. Ind. Eng. Chem. (2015).
  18. Lee CH, Hyeon DH, Jung H, Chung W, Jo DH, Shin DK, Kim SH, J. Ind. Eng. Chem. (2015).
  19. Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci. (2011).
  20. Chan WH, Mazlee MN, Ahmad ZA, Ishak MAM, Shamsul JB, J. Mater. Cycles Waste Manag. (2017).
  21. Zhao P, Zhang G, Hao L, Adsorption (2020).
  22. Zhang G, Zhao P, Hao L, Xu Y, Cheng H, Sep. Purif. Technol. (2019).
  23. Zhao P, Zhang G, Xu Y, Lv YK, Yang Z, Cheng H, Energy and Fuels (2019).
  24. Chen C, Bhattacharjee S, Appl. Surf. Sci., 396, 1515, 2017
  25. Singh G, Lakhi KS, Kim IY, Kim S, Srivastava S, Naidu PR, Vinu A, ACS Appl. Mater. Interfaces (2017).
  26. Huang YF, Chiueh PT, Shih CH, Lo SL, Sun LP, Zhong Y, Qiu CS, Energy, 84, 75, 2015
  27. Yin CG, Bioresour. Technol., 120, 273, 2012
  28. McGurk SJ, Martin CF, Brandani S, Sweatman MB, Fan XF, Appl. Energy, 192, 126, 2017
  29. Nigar H, Garcia-Banos B, Penaranda-Foix FL, Catala-Civera JM, Mallada R, Santamaria J, AIChE J., 62(2), 547, 2016
  30. Kalantarifard A, Ghavaminejad A, Yang GS, J. Mater. Cycles Waste Manag., 19, 394, 2017
  31. Ates A, Akgul G, Powder Technol., 287, 285, 2016
  32. Zhu YJ, Chen F, Chem. Rev., 114(12), 6462, 2014