Issue
Korean Chemical Engineering Research,
Vol.59, No.2, 247-253, 2021
Coalescence of Two Oppositely Charged Droplets at Constant Electric Potential
Electrocoalescence is an active technique in petroleum industry, formation of raindrop in cloud, and digital microfluidics. In the present work, electrocoalescence of two droplets under the constant electric potential in air was studied. Through this experiment, we found that the electrocoalescence process could be divided three phases; deformation, formation of liquid bridge, and merging. And the condition for formation of liquid bridge between two droplets was obtained. For the connection of experimental result in constant potential condition with general case in constant charge condition, relationship of charge and potential difference was deduced by numerical computation. In high electric potential case, flat interfaces after recoiling were observed. It was interpreted through a numerical simulation of electric field.
[References]
  1. Eow JS, Ghadiri M, Sharif AO, Williams TJ, Chem. Eng. J., 84(3), 173, 2001
  2. Pruppacher HR, Klett JD, “Microphysics of Clouds and Precipitation,” New York(2004).
  3. Zhang XG, Basaran OA, Wham RM, AIChE J., 41(7), 1629, 1995
  4. Zhang X, Basaran OA, Wham RA, Sep., Sci. Technol., 30(7), 1169, 1995
  5. Teh SY, et al., Lab Chip, 8(2), 198, 2008
  6. Fair RB, Microfluid. Nanofluidics., 3(3), 245, 2007
  7. Im DJ, Korean J. Chem. Eng., 32(6), 1001, 2015
  8. Prakash R, Paul R, Kaler KVIS, Lab Chip, 10(22), 3094, 2010
  9. Lee J, et al., Sens. Actuators A-Phys., 95(2), 259, 2002
  10. Jung YM, Kang IS, Biomicrofluidics, 4(2), 24104, 2010
  11. Jung YM, Kang IS, Biomicrofluidics, 3(2), 022402, 2009
  12. Jung YM, Oh HC, Kang IS, J. Colloid Interface Sci., 322(2), 617, 2008
  13. Im DJ, et al., Anal. Chem., 85(8), 4038, 2013
  14. Ahn MM, Kang IS, Analyst, 138(24), 7362, 2013
  15. Lee DW, Im DJ, Kang IS, Appl. Phys. Lett., 100(22), 221602, 2012
  16. Choi CY, Im DJ, Korean Chem. Eng. Res., 54(4), 568, 2016
  17. Bae SJ, Im DJ, Korean Chem. Eng. Res., 58(3), 450, 2020
  18. Yang SH, Im DJ, Langmuir, 33(48), 13740, 2017
  19. Im DJ, Langmuir, 36(17), 4785, 2020
  20. Bremond N, Thiam AR, Bibette J, Phys. Rev. Lett., 100(2), 024501, 2008
  21. Lai A, Bremond N, Stone HA, J. Fluid Mech., 632, 97, 2009
  22. Miller AH, Shelden CE, Atkinson WR, Phys. Fluids, 8(11), 1921, 1965
  23. Taylor GI, Proc. R. Soc. A, 306, 423, 1968
  24. Priest C, Herminghaus S, Seemann R, Appl. Phys. Lett., 89, 134101, 2006
  25. Eow JS, Ghadiri M, Colloids Surf. A: Physicochem. Eng. Asp., 219(1), 253, 2003
  26. Ristenpart WD, et al., Nature, 461, 377, 2009
  27. Bird JC, et al., Phys. Rev. Lett., 103(16), 164502, 2009
  28. Mugele F, Nature, 461, 356, 2009
  29. Pierre A, Aitken F, IEEE Trans. Ind. Appl., 46(4), 1578, 2010
  30. Pierre A, Lundgaard L, Berg G, J. Electrostat., 64(7), 550, 2006
  31. John L, Roxburgh IW, Proc. R. Soc. A, 295, 84, 1966
  32. Atten P, J. Electrostat., 30, 259, 1993
  33. Davis MH, Q. J. Mech. Appl. Math., 17(4), 499, 1964