Issue
Korean Chemical Engineering Research,
Vol.59, No.2, 232-238, 2021
Steam Reforming of Toluene Over Ni/Coal Ash Catalysts: Effect of Coal Ash Composition
The development of a low cost catalyst with high performance and small amount of carbon deposition on catalyst from toluene steam reforming were investigated by using coal ash as a support material. Ni-loaded coal ash catalyst showed similar catalytic activi ty for toluene steam reforming compared with the Ni/Al2O3. At 800oC, the toluene conversionwas 77% for Ni/TAL, 68 % for Ni/KPU and 78% for Ni/Al2O3. Ni/TAL showed similar toluene conversion to Ni/Al2O3.However, Ni/KPU produced higher hydrogen yield at relatively lower toluene conversion. Ni/KPU catalyst showed aremarkable ability of suppressing the carbon deposition. The difference in coke deposition and hydrogen yield is due to the composition of KPU ash (Ca and Fe) which increase coke resistance and water gas shift reaction. This study suggests that coal ash catalysts have great potential for the application in the steam reforming of biomass tar.
[References]
  1. Cao JP, Liu TL, Ren J, Zhao XY, Wu Y, Wang JX, Ren XY, Wei XY, J. Anal. Appl. Pyrolysis, 127, 82, 2017
  2. Setyawan D, Yoo JH, Kim SD, Cho HK, Rhim YJ, Lim JH, Lee SH, Chun DH, Korean J. Chem. Eng., 56, 547, 2018
  3. Han SW, Seo MW, Park SJ, Son SH, Yoon SJ, et al., Korean J. Chem. Eng., 57, 874, 2019
  4. Guan G, Kaewpanha M, Hao X, Abudula A, Renew. Sust. Energ. Rev., 58, 450, 2016
  5. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355, 2011
  6. Oh G, Park SY, Seo MW, Ra HW, Mun TY, Lee JG, Yoon SJ, Int. J. Green Energy, 16, 333, 2019
  7. Oh G, Park SY, Seo MW, Kim YK, Ra HW, Lee JG, Yoon SJ, Renew. Energy, 86, 841, 2016
  8. Rios MLV, Gonzalez AM, Lora EES, del Olmo OAA, Biomass Bioenerg., 108, 345, 2018
  9. Schmidt S, Giesa S, Drochner A, Vogel H, Catal. Today, 175(1), 442, 2011
  10. Heo DH, Lee R, Hwang JH, Sohn JM, Catal. Today, 265, 95, 2016
  11. Quitete CPB, Bittencourt RCP, Souza MMVM, Catal. Lett., 145(2), 541, 2015
  12. Kannari N, Oyama Y, Takarada T, Int. J. Hydrog. Energy, 42(15), 9611, 2017
  13. Guan G, Chen G, Kasai Y, Lim EWC, Hao H, Kaewpanha MA, Fushimi AC, Tsutsumi A, Appl. Catal. B: Environ., 115-116, 1519, 2012
  14. Balakrishnan M, Batra VS, Hargreaves JSJ, Pulford ID, Green Chem., 13, 16, 2011
  15. Bepari S, Pradhan NC, Dalai AK, Catal. Today, 291, 36, 2017
  16. Ashok J, Kathiraser Y, Ang ML, Kawi S, Catal. Sci. Technol., 5, 4398, 2015
  17. Lee HJ, Kim WH, Lee KB, Yoon WL, Korean Chem. Eng. Res., 56(6), 914, 2018
  18. Lee SH, Lim H, Kim SD, Jeon CH, Korean Chem. Eng. Res., 52(2), 233, 2014
  19. Herman AP, Yusup S, Shahbaz M, Chem. Eng. Trans., 52, 1249, 2016
  20. Blissett RS, Rowson NA, Fuel, 97, 1, 2012
  21. Artetxe M, Alvarez J, Nahil MA, Olazar M, Williams PT, Energy Conv. Manag., 136, 119, 2017
  22. Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508, 2008
  23. Dieuzeide ML, Laborde M, Amadeo N, Cannilla C, Bonura G, Frusteri F, Int. J. Hydrog. Energy, 41(1), 157, 2016
  24. Do JY, Kwak BS, Park NK, Lee TJ, Lee ST, Jo SW, Cha MS, Jeon MK, Kang M, Int. J. Hydrog. Energy, 42(36), 22687, 2017
  25. Pala LPR, Wang Q, Kolb G, Hessel V, Renew. Energy, 101, 484, 2017
  26. Zamboni I, Courson C, Kiennemann A, Appl. Catal. B: Environ., 203, 154, 2017
  27. Adnan MA, Muraza O, Razzak SA, Hossain MM, de Lasa HI, Energy Fuels, 31(7), 7471, 2017
  28. Ahmed T, Xiu SN, Wang LJ, Shahbazi A, Fuel, 211, 566, 2018
  29. Ashok J, Kawi S, Appl. Catal. A: Gen., 490, 24, 2015
  30. Rodemerck U, Scheider M, Linke D, Catal. Commun., 102, 98, 2017
  31. Josuinkas FM, Quitete CPB, Ribeiro NFP, Souza MMVM, Fuel Process. Technol., 121, 76, 2014
  32. Park SY, Oh G, Kim K, Seo MW, Ra HW, Mun TY, Lee JG, Yoon SJ, Renew. Energy, 105, 76, 2017