Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 138-151, 2021
The Onset and Growth of the Buoyancy-driven Fingering Driven by the Irreversible A+B→C Reaction in a Porous Medium: Reactant Ratio Effect
The effect of a reactant ratio on the growth of a buoyancy-driven instability in an irreversible A+B→C reaction system is analyzed theoretically and numerically. Taking a non-stoichiometric reactant ratio into account, new linear stability equations are derived without the quasi-steady state assumption (QSSA) and solved analytically. It is found that the main parameters to explain the present system are the Damkohler number, the dimensionless density difference of chemical species and the ratio of reactants. The present initial grow rate analysis without QSSA shows that the system is initially unconditionally stable regardless of the parameter values; however, the previous initial growth rate analysis based on the QSSA predicted the system is unstable if the system is physically unstable. For time evolving cases, the present growth rates obtained from the spectral analysis and pseudo-spectral method support each other, but quite differently from that obtained under the conventional QSSA. Adopting the result of the linear stability analysis as an initial condition, fully nonlinear direct numerical simulations are conducted. Both the linear analysis and the nonlinear simulation show that the reactant ratio plays an important role in the onset and the growth of the instability motion.
[References]
  1. Burghelea TI, Frigaard IA, J. Non-Newton. Fluid Mech., 166(9-10), 500, 2011
  2. Ghoshal P, Kim MC, Cardoso SSS, Phys. Chem. Chem. Phys., 19, 644, 2017
  3. Wylock C, Rednikov A, Colinet P, Haut B, Chem. Eng. Sci., 157, 232, 2017
  4. Almarcha C, Trevelyan PMJ, Grosfils P, De Wit A, Phys. Rev. Lett., 104, 044501, 2010
  5. Almarcha C, R'Honi Y, De Decker Y, Trevelyan PMJ, Eckert K, De Wit A, J. Phys. Chem. B, 115(32), 9739, 2011
  6. Kuster S, Riolfo LA, Zalts A, El Hasi C, Almarcha C, Trevelyan PMJ, De Wit A, D’Onofrio A, Phys. Chem. Chem. Phys., 13, 17295, 2011
  7. Lemaigre L, Budroni MA, Riolfo LA, Grosfils P, De Wit A, Phys. Fluids, 25, 014103, 2013
  8. Cherezov I, Cardoso SSS, Chem. Chem. Phys., 18, 23727, 2016
  9. Hejazi SH, Azaiez J, J. Fluid Mech., 695, 439, 2012
  10. Hejazi SH, Azaiez J, Water Res. Res., 49, 4697, 2013
  11. Tan CT, Homsy GM, Phys. Fluids, 29, 3549, 1986
  12. Trevelyan PMJ, Almarcha C, De Wit A, J. Fluid Mech., 670, 38, 2011
  13. Ghesmat K, Hassanzadeh H, Abedi J, J. Fluid Mech., 673, 480, 2011
  14. Ghesmat K, Hassanzadeh H, Abedi J, Chen ZX, Fuel, 107, 525, 2013
  15. Loodts V, Rongy L, De Wit A, Phys. Chem. Chem. Phys., 17, 29814, 2015
  16. Kim MC, Chem. Eng. Sci., 112, 56, 2014
  17. Loodts V, Thomas C, Rongy L, De Wit A, Phys. Rev. Lett., 113, 114501, 2014
  18. Kim MC, Wylock C, Can. J. Chem. Eng., 95(3), 589, 2017
  19. Rongy L, Trevelyan PMJ, De Wit A, Chem. Eng. Sci., 65(7), 2382, 2010
  20. Trevelyan PMJ, Almarcha C, De Wit A, Phys. Rev. E, 91, 023001, 2015
  21. Ben Y, Demekhin EA, Chang HC, Phys. Fluids, 14, 999, 2002
  22. Riaz A, Hesse H, Tchelepi HA, Orr FM, J. Fluid Mech., 548, 87, 2006
  23. Pritchard D, Eur. J. Mech., 28, 564, 2009
  24. Kim MC, Choi CK, Korean J. Chem. Eng., 32(12), 2400, 2015
  25. Kim MC, Korean J. Chem. Eng., 34(1), 189, 2017
  26. Tan CT, Homsy GM, Phys. Fluids, 31, 1330, 1988
  27. Kim MC, Choi CK, Phys. Fluids, 23, 084105, 2011
  28. Tilton N, Daniel D, Riaz A, Phys. Fluids, 25, 092107, 2013