Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 118-126, 2021
라이신 첨가에 의한 폐 굴껍질 이용 vaterite형 탄산칼슘 제조
Production of Vaterite Type Calcium Carbonate by using Oyster Shell Waste with Lysine
폐기물로 대량 발생되는 굴껍질을 활용한 vaterite 형 탄산칼슘 제조 실험을 하였다. 굴껍질을 800 °C 의 온도에서 항량이 되도록 가열하여 산화칼슘이 주성분인 소성 굴껍질을 제조하였다. 이 굴껍질을 질산 용액에 녹여 0.1M 질산칼슘 수용액을 만들고, 0.1 몰 라이신/1 몰 생석회가 첨가된 0.1 M 탄산나트륨 수용액과 20 °C, 600 rpm 교반 조건에서 1시간동안 반응시켜 탄산칼슘을 제조하였다. XRD, SEM, Size 분석을 하고 vaterite 84.5%, calcite 15.5% 함유한 구형 탄산칼슘을 확인하였다. 평균 입경 범위는 6.87 μm 이었고, 아미노산 분석에서 탄산칼슘 내의 라이신 함유량은 0.1%이었다.
The experiments to produce the vaterite type calcium carbonate were conducted for using the waste oyster shell as the recycling resources. Firstly, the oyster shell were calcinated at 800 °Cfor 24 h. Calcinated oyster shell were reacted with the nitric acid solution, and were diluted to 0.1 M Ca(NO3)2 solution. This solution was mixed with 0.1 M Na2CO3 contained 0.1 mol lysine/1 mol CaO at 20 °C and 600 rpm mixing condition for 1 h. The reaction products were identified to vaterite type calcium carbonate (84.5% vaterite, 15.5% calcite) by XRD and SEM analysis. Mean particle diameter was 6.87 μm, and the lysine content in calcium carbonate was analyzed to 0.1%.
[References]
  1. https://www.kmi.re.kr/web/contents View.do?rbsidx=224, Korea Maritime Institute, Marine ocean statics(2018).
  2. Park SC, Cho HS, Chung JD, Journal of Korea Society of Waste Management, 33(5), 513 (2016).
  3. Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109, 2011
  4. Thenepalli T, Ahn YJ, Han C, Ramakrishna C, Ahn JW, Korean J. Chem. Eng., 32(6), 1009, 2015
  5. Maruo Calcium, “Monodispersed Vaterite type Calcium Carbonate, and Shape Control Method,” Korea Patent No 10-0176250(1998).
  6. KAIST, “Method for preparing Hydroxyapatite from Vaterite containing Catechol Amine,” Korea Patent No 10-1318348(2013).
  7. Lyu SG, Ryu SO, Park YH, Sur GS, Korean Chem. Eng. Res., 36(2), 262, 1998
  8. Kang YC, Park SB, Korean Chem. Eng. Res., 35(6), 846, 1997
  9. Lee SG, Jung WM, Kim WS, Choi CK, Korean Chem. Eng. Res., 36(1), 49, 1998
  10. Saksono N, Gozan M, Bismo S, Krisanti E, Widaningrum R, Song SK, Korean J. Chem. Eng., 25(5), 1145, 2008
  11. Han HK, Kim BM, Kim JA, Korean Chem. Eng. Res., 46(6), 1052, 2008
  12. Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 46(6), 1007, 2008
  13. Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213, 2009
  14. Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1532, 2010
  15. Son C, Song W, Hwang DS, Hong YK, Joo J, Choi YS, Korean J. Chem. Eng., 33(8), 2406, 2016
  16. Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109, 2011
  17. Kralj D, Brecevic L, J. Cryst. Growth, 104, 793, 1990
  18. Albeck S, Weiner S, Addadi L, Chem. Eur. J., 2(3), 278, 1996
  19. Zhang S, Gonsalves KE, Langmuir, 14(12), 6761, 1998
  20. Ogino T, Suzuki T, Sawada K, J. Cryst. Growth, 100, 159, 1990
  21. Rao MS, Bull. Chem. Soc. Jpn., 46, 1414, 1973
  22. Kontoyannis C, Vagenas NV, Analyst, 125, 251, 2000
  23. Lyu SG, Sur GS, Kang SH, Korean Chem. Eng. Res., 35(2), 186, 1997
  24. Han HK, Jeong OH, Lim MH, Kim JA, Korean Chem. Eng. Res., 44(3), 289, 2006