Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 106-111, 2021
Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출
Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis
본 연구에서는 식물세포 Taxus chinensis로부터 항암물질 파클리탁셀을 효율적으로 정제하기 위하여, 초음파 기반 마이셀 추출 공정을 개발하였다. 전통적 마이셀 공정(대조군)에서의 많은 추출 단계 및 긴 상 분리 시간 문제를 획기적으로 개선하였다. 초음파 파워 180 W, 초음파 조사 1.5 시간에서 가장 높은 파클리탁셀 수율(~96%, 2회 추출)을 얻었으며, 이는 대조군의 수율에 비해 24.7% 증가하였다. 또한 분배 계수(K)는 초음파 파워 180 W, 초음파 조사 1.5 시간에서 최대치(24.0)를 보였다. 파클리탁셀 순도에는 큰 차이가 없었으며, 초기 파클리탁셀의 순도(6.81%)가 정제 후 22%까지 증가하였다. 역 추출(back extraction)의 상 분리 시간은 대조군 대비 각각 40.7-56.2%(초음파 파워 80 W), 46.3-67.6%( 초음파 파워 180 W), 51.9-67.6%(초음파 파워 250 W) 감소하였다. 초음파 파워(80-250 W)와 초음파 조사 시간(0.5-2.5 시간)이 증가할수록 상 분리 시간이 감소하였다.
In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.
[References]
  1. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 25, 86, 2020
  2. Yang JW, Kim JH, Korean Chem. Eng. Res., 57(2), 210, 2019
  3. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188, 2009
  4. Rao KV, Hanuman JB, Alvarez C, Stoy M, Juchum J, Davies RM, Baxley R, Pharm. Res., 12, 1003, 1995
  5. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068, 1999
  6. Choi HK, Son SJ, Na GH, Hong SS, Park YS, Song JY, Korean J. Plant Biotechnol., 29, 59, 2002
  7. Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965, 2019
  8. Jeon KY, Kim JH, Biotechnol. Bioprocess Eng., 12, 354, 2007
  9. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985, 2004
  10. Seo HW, Kim JH, Process Biochem., 87, 238, 2019
  11. Kim JH, Process Biochem., 39(11), 1567, 2004
  12. Zhu KX, Sun XH, Zhou HM, J. Cereal Sci., 50, 266, 2009
  13. Jeon KY, Kim JH, Korean J. Biotechnol. Bioeng., 23, 557, 2008
  14. Han MG, Jeon KY, Mun S, Kim JH, Process Biochem., 45(8), 1368, 2010
  15. Ha GS, Kim JH, Korean Chem. Eng. Res., 54(2), 229, 2016
  16. Tan Z, Li Q, Wang C, Zhou W, Yang Y, Wang H, Yi Y, Li F, Molecules, 22, 1483, 2017
  17. Patil SS, Rathod VK, Process Biochem., 93, 85, 2020
  18. Cao J, Peng LQ, Du LJ, Zhang QD, Xu JJ, Anal. Chim. Acta, 963, 24, 2017
  19. Ziyatdinova G, Ziganshina E, Cong PN, Budnikov H, Anal. Methods, 8, 7150, 2016
  20. Kim JH, Korean Chem. Eng. Res., 58(2), 273, 2020
  21. Guo YX, Han J, Zhang DY, Wang LH, Zhou LL, Ultrason. Sonochem., 19, 719, 2012