Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 100-105, 2021
PDMS 블레이드 코팅법을 이용한 종이-기반 바이오센서칩 제작
Fabrication of Paper-based Biosensor Chip Using Polydimethylsiloxane Blade Coating Method
본 연구는 적은 비용으로 분석 장치 없이 질병 진단 및 경과를 모니터링할 수 있는 종이-기반 분석 장치(paper-based analytical device, PAD)를 제작하기 위해 polydimethylsiloxane (PDMS) 블레이드 코팅 방법을 제안하였다. PAD 디자인은 레이저 커팅 기술로 쉽게 몰드에 적용할 수 있으며, 제작된 몰드로 블레이드 코팅을 수행하여 완전한 소수성 장벽 형성에 필요한 조건을 확립하였다. 코팅 조건인 잉크의 두께와 종이와의 접촉시간에 따라 PDMS 소수성 장벽의 구조와 친수성 채널의 크기 변화를 분석하여 안정적으로 소수성 장벽을 형성할 수 있는 조건을 최적화하였다. 최적화된 방법을 바탕으로 PAD를 제작하여 특별한 분석기기 없이 단백질, 당, 메탈이온을 검출하여 바이오센서에 응용가능함을 증명하였다.
This paper proposes the polydimethylsiloxane (PDMS) blade coating method for fabrication of paperbased analytical device (PAD) that is able to monitor the disease diagnosis and progress without special analytical equipment. The mold that has PAD design is easily modified by using laser cutting technique. And the fabricated mold is used for hydrophobic barrier formation by blade coating. We have optimized the stable formation of PDMS hydrophobic barrier as blade coating condition, which is established by analyzing the structure of the PDMS hydrophobic barrier and change of hydrophilic channel size as thickness of the ink and contact time with the chromatography paper. Based on optimal condition, we demonstrate that PAD as biosensor can apply to detect protein, glucose, and metal ion without special analysis equipment.
[References]
  1. Martinez AW, Phillips ST, Whitesides GM, Carrilho E, Anal Chem., 82(1), 3, 2010
  2. Yamada K, Henares TG, Suzuki K, Citterio D, Angew. Chem.-Int. Edit., 54(18), 5294, 2015
  3. Yamada K, Shibata H, Suzuki K, Citterio D, Lab Chip, 17(7), 1206, 2017
  4. Li F, Hu YT, Li ZM, Liu JC, Guo L, He JB, Anal Bioanal Chem., 411(24), 6497, 2019
  5. Martinez AW, Phillips ST, Butte MJ, Whitesides GM, Angew. Chem.-Int. Edit., 46(8), 1318, 2007
  6. Abe K, Suzuki K, Citterio D, Anal Chem., 80(18), 6928, 2008
  7. Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS, Acs Appl Mater Inter, 1(1), 124, 2009
  8. Nie JF, Liang YZ, Zhang Y, Le SW, Li DN, Zhang SB, Analyst, 138(2), 671, 2013
  9. Evans E, Gabriel EFM, Coltro WKT, Garcia CD, Analyst, 139(9), 2127, 2014
  10. Lu Y, Shi WW, Jiang L, Qin JH, Lin BC, Electrophoresis, 30(9), 1497, 2009
  11. Carrilho E, Martinez AW, Whitesides GM, Anal Chem, 81(16), 7091, 2009
  12. Olkkonen J, Lehtinen K, Erho T, Anal Chem, 82(24), 10246, 2010
  13. Dungchai W, Chailapakul O, Henry CS, Analyst, 136(1), 77, 2011
  14. Kim DH, Jeong SG, Lee CS, Korean Chem Eng Res, 58(2), 286, 2020
  15. Chen B, Kwong P, Gupta M, Acs Appl Mater Inter, 5(23), 12701, 2013
  16. Dornelas KL, Dossi N, Piccin E, Anal Chim Acta, 858, 82, 2015
  17. Wang JY, Monton MRN, Zhang X, Filipe CDM, Pelton R, Brennan JD, Lab Chip, 14(4), 691, 2014
  18. McDonald JC, Whitesides GM, Accounts Chem. Res., 35(7), 491, 2002
  19. Tanaka H, Yamamoto S, Nakamura A, Nakashoji Y, Okura N, Nakamoto N, Tsukagoshi K, Hashimoto M, Anal Chem, 87(8), 4134, 2015
  20. Baipaywad P, KiM YK, Wi JS, Paik TJ, Park HS, J. Ind. Eng. Chem., 53, 177, 2017
  21. Jeong HH, Clean Technol., 25(4), 283, 2019
  22. Shim G, Jeong SG, Hong W, Kang KK, Lee CS, Korean Chem Eng Res, 56(6), 826, 2018
  23. Lee JN, Park C, Whitesides GM, Anal Chem,, 75(23), 6544, 2003
  24. Lee J, Kim MJ, Lee HH, Langmuir, 22(5), 2090, 2006
  25. Riekkola ML, Electrophoresis, 23(22-23), 3865, 2002
  26. Bao DD, Millare B, Xia W, Steyer BG, Gerasimenko AA, Ferreira A, Contreras A, Vullev VI, J. Phys. Chem. A, 113(7), 1259, 2009
  27. Bruzewicz DA, Reches M, Whitesides GM, Anal Chem, 80(9), 3387, 2008