Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 85-93, 2021
Influencing Parameters on Supercritical Water Reactor Design for Phenol Oxidation
For accurate and reliable process design for phenol oxidation in a plug flow reactor with supercritical water, modeling can be very insightful. Here, the velocity and density distribution along the reactor have been predicted by a numerical model and variations of temperature and phenol mass fraction are calculated under various flow conditions. The numerical model shows that as we proceed along the length of the reactor the temperature falls from above 430 °C to approximately 380 °C. This is because the generated heat from the exothermic reaction is less that the amount lost through the walls of the reactor. Also, along the length, the linear velocity falls to less than one-third of the initial value while the density more than doubles. This is due to the fall in temperature which results in higher density which in turn demands a lower velocity to satisfy the continuity equation. Having a higher oxygen concentration at the reactor inlet leads to much faster phenol destruction; this leads to lower capital costs (shorter reactor will be required); however, the operational expenditures will increase for supplying the needed oxygen. The phenol destruction depends heavily on the kinetic parameters and can be as high as 99.9%. Using different kinetic parameters is shown to significantly influence the predicted distributions inside the reactor and final phenol conversion. These results demonstrate the importance of selecting kinetic parameters carefully particularly when these predictions are used for reactor design.
[References]
  1. Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207, 2001
  2. Paradowska M, an experimental study., Universitat Rovira i Virgili, Tarragona(2004).
  3. Tester JW, Cline JA, Corrosion, 55(11), 1088, 1999
  4. Bermejo MD, Cocero MJ, AIChE J., 52(11), 3933, 2006
  5. Mylapilli SVP, Reddy SN, J. Environ. Chem. Eng., 7(3), 103165, 2019
  6. Yang B, Shen Z, Cheng Z, Ji W, Chemosphere, 188, 642, 2017
  7. Zhang J, Wang S, Li Y, Lu J, Chen S, Lou X, Environ. Technol., 38(15), 1949, 2017
  8. Yang B, Cheng Z, Fan M, Jia J, Yuan T, Shen Z, Chemosphere, 205, 426, 2018
  9. Chen Z, Chen ZL, Yin FJ, Wang GW, Chen HZ, He CL, Xu YJ, J. Hazard. Mater., 332, 205, 2017
  10. Silva CL, Ravinder K, Garlapalli RK, Trembly JP, J. Environ. Chem. Eng., 5(1), 488, 2017
  11. Qian LL, Wang SZ, Xu DH, Guo Y, Tang XY, Wang LF, Bioresour. Technol., 176, 218, 2015
  12. Dong X, Zhang Y, Xu Y, Zhang M, RSC Adv., 5(59), 47488, 2015
  13. Gong YM, Guo Y, Sheehan JD, Chen ZF, Wang SZ, Chem. Eng. J., 331, 578, 2018
  14. Gong Y, Gou Y, Wan S, Song W, Xu D, Water Res., 100, 116, 2016
  15. Fourcault A, Jarana BG, Onento JS, Marias F, Portela JR, Water ReChem. Eng. J., 152(1), 227, 2009
  16. Ghoreishi SM, Mortazavi SSM, Hedayati A, Chem. Prod. Process. Model., 10(4), 243, 2015
  17. Bazargan M, Fraser D, J. Heat. Trans., 131(6), 61702, 2009
  18. Mohseni M, Bazargan M, J. Heat. Trans., 133(7), 71701, 2011
  19. Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201, 1997
  20. Perez IV, Rogak S, Branion R, J. Supercrit. Fluids, 30(1), 71, 2004
  21. Yermakova A, Mikenin PE, Anikeev VI, Theory Found. Chem. Eng., 40(2), 168, 2006
  22. Dong XQ, Gan ZD, Lu XL, Jin WZ, Yu YZ, Zhang MH, Chem. Eng. J., 277, 30, 2015
  23. Ma GQ, Zou M, Asian Journal of Chemistry, 27(5), 1695, 2015
  24. Vielcazals S, Mercadier J, Marias F, Mateos D, Bottreau M, Cansell F, Marraud C, AIChE J., 52(2), 818, 2006
  25. Zhou N, Krishnan A, Vogel F, Peters WA, Adv. Environ. Res., 4(1), 75, 2000
  26. Lemmon E, Huber M, McLinden M, NIST Standard Reference Satabase, 23(2002).
  27. Krajnc M, Levec J, AIChE J., 42(7), 1977, 1996
  28. Portela JR, Nebot E, de la Ossa EM, Chem. Eng. J., 81(1-3), 287, 2001
  29. Eckenfelder WW, Roth JA, Bowers AR, Chemical Oxidation: Technology for the Nineties, CRC Press, Tennessee (1993).
  30. Thornton TD, Savage PE, AIChE J., 38(3), 321, 1992
  31. Wang SZ, Guo Y, Wang LA, Wang YZ, Xu DH, Ma HH, Fuel Process. Technol., 92(3), 291, 2011
  32. Yu JL, Savage PE, Appl. Catal. B: Environ., 28(3-4), 275, 2000
  33. Gopalan S, Savage PE, AIChE. J., 41(8), 1864, 1995
  34. Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY, Renew. Sust. Energ. Rev., 14, 334, 2010
  35. Kalaga A, Trebble M, J. Chem. Eng. Data, 44, 1063, 1999
  36. Poling BE, Prausnitz JM, O'connell JP, “The Properties of Gases and Liquids,” McGraw-Hill, New York, NY(2001).
  37. Uchida H, Usui I, Fuchita A, Matsuoka M, J. Chem. Eng. Data, 49(6), 1560, 2004
  38. Klauck M, Grenner A, Taubert K, Martin A, Meinhardt R, Schmelzer J, Ind. Eng. Chem. Res., 47(15), 5119, 2008
  39. Ghizellaoui S, Meniai AH, Desalination, 185(1-3), 457, 2005
  40. Akiya N, Savage PE, Chem. Rev., 102(8), 2725, 2002
  41. Henrikson JT, Chen Z, Savage PE, Ind. Eng. Chem. Res., 42(25), 6303, 2003