Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 49-53, 2021
PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구
Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane
고분자 연료전지(PEMFC) 고분자막의 화학적 내구성을 평가하는데 Fenton 반응이 자주 사용된다. 그러나 과산화수소와 철 이온의 격렬한 반응 때문에 재현성이 낮아 실험 데이터를 비교하기가 어려운 문제점이 있다. 본 연구에서는 Fenton 반응에 의한 고분자막 내구성 실험의 재현성을 향상시키기 위한 반응조건을 찾고자 하였다. 과산화수소 농도는 30%로 고정시키고 철이온 농도와 온도, 교반속도, 시료크기를 변화시키며 라디칼에 열화된 Nafion 고분자막의 불소이온 농도를 측정했다. 철이온 농도를 높게하거나 고분자막 시료 크기를 크게하고, Fenton 반응 온도를 80 °C로 높게하면 실험편차가 커져서 철이온 농도 10 ppm, 온도 70 °C와 시료크기 0.5 cm2가 적합하였다.
The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 °C, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 °C, and a sample size of 0.5 cm2 were suitable.
[References]
  1. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, , Chem. Rev., 107(10), 3904, 2007
  2. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191, 2005
  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140(10), 2872, 1993
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104, 2005
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Wilkinson DP, St-Pierre J, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  11. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  12. Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283, 2008
  13. Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222, 2006
  14. Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597, 2006
  15. Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98(9), 1766, 2013
  16. Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23, 2017
  17. Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66, 2013
  18. Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98, 2017
  19. Liang ZX, Chen WM, Liu JG, Wang SL, Zhou ZH, Li WZ, Sun GQ, Xin Q, J. Membr. Sci., 233(1-2), 39, 2004
  20. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018
  21. Oh SH, Kwag AH, Lee DW, Lee MS, Lee DH, Park KP, Korean Chem. Eng. Res., 57(6), 768, 2019