Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 21-34, 2021
Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조
Fabrication of Chitosan Nanoparticles with Lactococcus lactis for the Removal of Phthalate Endocrine Hormone
본 연구에서는 Chitosan nanoparticles (CNPs) 와 Lactococcus lactis (L. lac.) 를 흡착제로 사용하여 phthalates의 흡착 실험을 진행하였다. CNPs는 Tripolyphospate (TPP)와의 가교 결합을 통하여 제조되었으며, 제조과정 중에 L. lac.의 도입을 통하여 L. lac.-CNPs를 제조하였다. 모든 흡착제는 Fourier transform infrared spectroscopy (FTIR)을 사용하여 특성을 측정하여 다양한 작용기의 존재를 확인하였다. Adsorption isotherm 과 adsorption kinetic 을 통하여 CNPs, L. lac. 및 L. lac.-CNPs 의 흡착 거동 및 메커니즘을 확인하였다. 모든 입자에 대하여 DBP 및 DEP 의 흡착 거동은 Langmuir adsorption isotherm model 보다는 Freundlich adsorption isotherm model 에 적합하였으며, 이는 입자의 표면이 이질적 (heterogeneous) 라는 것을 의미한다. 흡착 메커니즘은 Pseudo-1st-order model 보다는 Pseudo-2nd-order model 에 적합하였으며, 이는 DBP 및 DEP 의 흡착이 입자 표면의 다양한 작용기들에 의하여 물리적 흡착보다는 정전기적 인력과 수소 결합 등에 의한 화학적 흡착이 지배적임을 나타낸다. 최종적으로, 쉽고 빠른 방법으로 CNPs 및 L. lac-CNPs 의 제조가 가능하며, 유기성 오염 물질을 효과적으로 제거할 수 있는 저비용의 흡착제로서 사용할 수 있음을 확인하였다.
Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tripolyphosphate (TPP), and L. lac.-CNPs were prepared through the introduction of L. lac. during the preparation. The various functional groups of all adsorbents were identified using Fourier transform infrared spectroscopy (FTIR). Adsorption isotherm and adsorption kinetic confirmed the adsorption behavior and mechanism of CNPs, L. lac. and L. lac.-CNPs. The adsorption behavior of DBP and DEP for all particles was more suitable for the Freundlich adsorption isotherm model than for the Langmuir adsorption isotherm model, which means that the surface of the particles is heterogeneous. The adsorption mechanism was more suitable for the Pseudo-2nd-order model than for the Pseudo-1st-order model. This means that due to the presence of various functional groups on the particle surface, the adsorption of DBP and DEP is dominated by chemical adsorption such as electrostatic attraction and hydrogen bonding rather than physical adsorption. Finally, it was confirmed that the preparation of CNPs and L.lac.-CNPs can be performed easily and quickly, and it could be used as a cheaper adsorbent that can effectively remove phthalates.
[References]
  1. Fromme H, et al., Int J. Hyg. Environ. Health, 210(1), 21, 2007
  2. Silva M, et al. J. Chromatogr B Analyt Technol Biomed Life Sci, 860(1), 106-112(2007).
  3. Becker K, et al., Int J. Hyg Environ Health, 207(5), 409, 2004
  4. Pecht MG, Ali I, Carlson A, IEEE Access, 6, 6232, 2018
  5. Ventrice P, et al., Environ. Toxicol. Pharmacol., 36(1), 88, 2013
  6. Wittassek M, et al., Int. J. Hyg. Environ. Health, 210(3), 319, 2007
  7. Latini G, Clin. Chim. Acta, 361(1), 20, 2005
  8. Silva MJ, et al., J. Chromatogr. B, 805(1), 161, 2004
  9. Kayser H, Annalen der Physik, 250(11), 450, 1881
  10. Hassan M, Hawkyard C, “Decolorisation of Effluent with Ozone and re-use of Spent Dyebath,” 149-190(2007).
  11. Huang R, et al., Int. J. Biol. Macromol., 86, 496, 2016
  12. Annadurai G, Chellapandian M, Krishnan MRV, Environmental Monitoring and Assessment, 59(1), 111-119(1999).
  13. Longhinotti E, et al., Journal of the Brazilian Chemical Society, 9(5), 435-440(1998).
  14. Vander Wal A, et al., Colloids Surf. B: Biointerfaces, 9(1), 81, 1997
  15. Vijayaraghavan K, Yun YS, Biotechnol Adv., 26(3), 266, 2008
  16. Volesky B, Hydrometallurgy, 59(2), 203, 2001
  17. Veglio F, Beolchini F, Hydrometallurgy, 44(3), 301, 1997
  18. Sudha Bai R, Abraham TE, Bioresource Technology, 87(1), 17, 2003
  19. Lim JW, Kang IJ, Bull. Korean Chem. Soc., 34(1), 237, 2013
  20. Ebrahimnejad P, Khavarpour M, Khalili S International Journal of Engineering, 30(4), 57 (2017).
  21. Mohammad N, et al., Nanomedicine, 6(1), 137, 2010
  22. Everett DH, Pure Appl. Chem., 31(4), 577, 1972
  23. Moldes AB, et al., Biomed Res Int, 13, 961, 2013
  24. Sparks DL, Environmental Soil Chemistry, 157, 133, 2003
  25. Han X, Wang W, Chemical Engineering Journal, 171(1), 1, 2011
  26. Ahmad R, Kumar R, Appl. Surf. Sci., 257(5), 1628, 2010
  27. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R, J. Hazard. Mater., 170(1), 357, 2009
  28. Al-Aoh HA, et al., Desalination and Water Treatment, 40(2), 159-167(2012).
  29. Han R, et al., Carbohydr. Polym., 79(4), 1140, 2010
  30. Kim BG, Kang JJ, Ultramicroscopy, 108, 1168, 2009
  31. Aydin S, et al., Theory and Application, 18, 19(2008).
  32. Du QJ, Sun JK, Li YH, Yang XX, Wang XH, Wang ZH, Xia LH, Chem. Eng. J., 245, 99, 2014
  33. Li Z, et al., Microporous Mesoporous Mater., 105(3), 291, 2007
  34. Ho YS, McKay G, Process Safety and Environmental Protection, 76(4), 332 (1998).
  35. Hall KR, et al., Ind. Eng. Chem. Fundam., 5(2), 212, 1966
  36. Yang XY, Al-Duri B, J. Colloid Interface Sci., 287(1), 25, 2005
  37. Tan KL, Hameed BH, Journal of the Taiwan Institute of Chemical Engineers, 74, 25-48(2017).
  38. Tran HN, et al., Water Res., 120, 88, 2017