Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 16-20, 2021
Cathode 산소 공급조건에서 고분자막 내구평가 프로토콜의 가습/건조 시간 변화의 영향
Effect of Change in Wet/Dry Time of PEMFC Membrane Durability Test Protocol Using Oxygen as Cathode Gas
PEMFC 고분자막의 내구성 향상을 위한 내구성 평가는 PEMFC 발전을 위해 매우 중요하므로 고분자막 내구성 평가 프로토콜(AST) 연구개발이 계속 되고 있다. 최근에 DOE의 고분자막 화학적/기계적 내구성 평가 AST가 개발되어 Nafion XL에 적용해 검토하였다. 평가시간을 단축시키기 위해 공기대신 산소를 Cathode 가스로 사용해 144시간만에 종료하였다. DOE AST가 가습 45초/건조 30초로 전압변화 횟수가 많아서 전극의 열화가 MEA 내구성에 더 많은 영향을 미쳤다. 그래서 가습 60초/건조 300초로 1사이클 시간을 길게하고 가습시간 대비 건조시간도 길게 하여 고분자막을 더 열화시키게 하였고, 240시간에 종료하였다. 고분자막 내구성 평가를 위한 DOE AST가 전극 열화도 동반됨을 확인하였다.
Since the durability evaluation for improving the durability of PEMFC polymer membranes is very important for the development of PEMFC, research and development of the polymer membrane durability evaluation protocol (AST) continues. Recently, DOE's polymer membrane chemical/mechanical durability evaluation AST was developed and applied to Nafion XL for review. In order to shorten the evaluation time, oxygen was used as a cathode gas instead of air, and it was finished in 144 hours. Since DOE AST has a large number of voltage changes with 45 seconds of humidification and 30 seconds of drying, the degradation of the electrode has more influence on the MEA durability. Therefore, one cycle time was lengthened with 60sec of wet/300sec of dry, and the drying time was made longer than the humidification time to further deteriorate the polymer membrane, and it was finished in 240 hours. It was confirmed that the DOE AST for evaluation of the durability of the polymer membrane was accompanied by electrode degradation.
[References]
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191, 2005
  2. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59, 2002
  3. Wilkinson DP, St-Pierre J, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872, 1993
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104, 2005
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  11. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf,
  12. Daido University, NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
  13. Mukundan R, 2016 DOE Fuel Cell Technologies Office Annual Merit Review, June 8th, 2016.
  14. Mukundan R, Baker AM, Kusoglu A, Beattie P, Knights S, Weber AZ, Borup RL, J. Electrochem. Soc., 165(6), F3085, 2018
  15. Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597, 2006
  16. Mench MM, Emin CK, Veziroglu TN, Polymer Electrolyte Fuel Cell Degradation, Academic Press, Oxford, Waltham, MA, 64-77(2012).
  17. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011