Issue
Korean Chemical Engineering Research,
Vol.58, No.4, 642-650, 2020
바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석
Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation
순환유동층 보일러에서 유동 입자들의 순환 경로는 연소로에서 비산된 입자들이 사이클론에서 포집되어 비기계적 밸브인 실포트(Sealpot)를 거쳐 연소로로 재순환하는 일반적인 경로를 갖는다. 그러나, 유동 입자들로부터 열을 추가적으로 흡수하기 위해 유동층 외부열교환기(FBHE; Fluidized Bed Heat Exchanger)가 설치된 경우, 실포트의 일부 입자들은 FBHE를 거쳐 연소로로 재순환하는 경로를 갖게 된다. 이때 기포유동층 영역으로 운전되는 FBHE는 실포트로부터 유입되는 고온(800~950 °C)의 입자들의 유동 특성에 따라 열교환 튜브의 국부적 가열로 인한 손상 및 hot spot에 의한 입자들의 고온 뭉침(agglomeration)이 발생할 수 있어 순환유동층의 안정적 조업에 영향을 미칠 수 있다. 본 연구에서는 국내 D 순환유동층 보일러의 FBHE에 대한 운전자료 분석 및 바라쿠다를 통한 CPFD(Computational Particle Fluid Dynamics) 해석을 통해 구조적 문제로부터 발생하는 열흐름의 불균일성을 밝혀내었다. 실제 D 순환유동층의 FBHE 열교환 튜브 온도는 실포트의 고체온도 변화와 가장 밀접한 상관관계를 나타내었으며, FBHE 내의 열흐름의 불균일성은 FBHE의 조업 유속의 증가(0.3→0.7 m/s)로는 그 불균일성을 해소하기 어려운 것으로 나타났다. 그러나, FBHE 로 유입되는 고온 입자들에 대한 사전 혼합 영역(Premixing Zone)이 설치된 경우와, 연소로로 재순환되는 입자 배출라인의 대칭화를 통한 구조변경 시, 입자 혼합의 증대와 더불어 열흐름의 불균일성은 상당 부분 감소하는 것으로 고찰되었다. 이에, FBHE의 구조 최적화가 열교환 성능 및 운전 안정성을 확보하는 대안임을 제시하였다.
In general, the circulation path of the fluidized particles in a CFB (Circulating Fluidized Bed) boiler is such that the particles entrained from a combustor are collected by a cyclone and recirculated to the combustor via a sealpot which is one of non-mechanical valves. However, when a fluidized bed heat exchanger (FBHE) is installed to additionally absorb heat from the fluidized particles, some particles in the sealpot pass through the FBHE and then flow into the combustor. At this time, in the FBHE operated in the bubbling fluidization regime, if the heat flow is not evenly distributed by poor mixing of the hot particles (800~950 °C) flowing in from the sealpot, the heat exchanger tubes would be locally heated and then damaged, and the agglomeration of particles could also occur by formation of hot spot. This may affect the stable operation of the circulating fluidized bed. In this study, the unevenness of heat flow arising from structural problems of the FBHE of the domestic D-CFB boiler was found through the operating data analysis and the CPFD (Computational Particle Fluid Dynamics) simulation using Barracuda VR. Actually, the temperature of the heat exchanger tubes in the FBHE showed the closest correlation with the change in particle temperature of the sealpot. It was also found that the non-uniformity of the heat flow was caused by channeling of hot particles flowing in from the sealpot. However, it was difficult to eliminate the non-uniformity even though the fluidizing velocity of the FBHE was increased enough to fluidize hot particles vigorously. When the premixing zone for hot particles flowing in from the sealpot is installed and when the structure is changed through the symmetrization of the FBHE discharge line for particles re-flowing into the combustor, the particle mixing and the uniformity of heat flow were found to be increased considerably. Therefore, it could be suggested that the structural modification of the FBHE, related to premixing and symmetric flow of hot particles, is an alternative to reduce the non-uniformity of the heat flow and to minimize the poor particle mixing.
[References]
  1. Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121, 2019
  2. IEA-FBC TCP, Country Report, edited by Jongmin Lee, KEPCO RI, Korea(2017).
  3. Lee SH, Lee JM, KEPCO Journal, 2(2), 211, 2016
  4. Lee JM, Kim JS, Kim JJ, Energy, 28, 111, 2003
  5. Lee SH, Lee JM, Kim JS, Choi JH, Kim SD, Korean Chem. Eng. Res., 38(4), 516, 2000
  6. Rogalev N, Contemporary Engineering Science, 7(34), 1807, 2014
  7. Wang L, Yang D, Shen Z, Mao K, Long J, Appl. Therm. Eng., 95, 42, 2016
  8. Lee JM, Kim DW, Park KI, Kim SM, 23th International Conference on FBC, Spring, Korea, 1171-1177(2018).
  9. Abbasi A, Ege PE, de Lasa HI, Chem. Eng. J., 174(1), 341, 2011
  10. Clark SM, Snider DM, Fletcher RP, AIChE 2012 Annual Meeting, Pittsburgh, Pennsylvania, USA(2012).
  11. Williams AK, NETL Workshop on Multiphase Flow Science, August, USA(2013).
  12. Wang B, Yu AB, Chem. Eng. J., 135(1-2), 33, 2008
  13. Pham HH, Lim YI, Han SG, Lim BS, Ko HS, Korean J. Chem. Eng., 35(5), 1073, 2018
  14. Mendoza JA, Hwang SW, Korean J. Chem. Eng., 35(11), 2157, 2018
  15. Wei L, Lu Y, Zhu J, Jiang G, Hu J, Teng H, Korean J. Chem. Eng., 35(10), 2117, 2018
  16. Wen C, Yu Y, Chemical Engineering Progress Symposium, 100-111(1966).
  17. Ergun S, Chemical Engineering Progress, 48-89(1949).
  18. CPFD Software, LLC, Barracuda VR Series 15 User Manual, 68-70(2013).