Issue
Korean Chemical Engineering Research,
Vol.58, No.4, 624-634, 2020
Experimental and Modeling Studies for the Adsorption of Phenol from Water Using Natural and Modified Algerian Clay
The ability of natural and modified clay to adsorb phenol was studied. The clay samples were analyzed by different technical instruments, such as X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. Surface area, pore volume and average pore diameter were also determined using B.E.T method. Up to 73 and 99% of phenol was successfully adsorbed by natural and activated clay, respectively, from the aqueous solution. The experiments carried out show that the time required to reach the equilibrium of phenol adsorption on all the samples is very close to 60 min. The amount of phenol adsorbed shows a declining trend with higher pH as well as with lower pH, with most extreme elimination of phenol at pH 4. The adsorption of phenol increases proportionally with the initial phenol concentration. The maximum adsorption capacity at 25 °C and pH 4 was 29.661 mg/g for modified clay (NaMt). However, the effect of temperature on phenol adsorption was not significant. The simple modification causes the formation of smaller pores in the solid particles, resulting in a higher surface area of NaMt. The equilibrium results in aqueous systems were well fitted by the Freundlich isotherm equation (R2 > 0.98). Kinetic studies showed that the adsorption process is best described by the pseudo-second-order kinetics (R2 > 0.99). The adsorption of phenol on natural and modified clay was spontaneous and exothermal.
[References]
  1. Legube B, Guide technique, Agence Loire, Bretagne, France(1996).
  2. Degremont SA, Memento technique de l’eau, 10th Edition Lavoisier, Rueil-Malmaison, in two vols(2004).
  3. Agency for toxic substances and disease registry (ATSDR), Public health service(2008).
  4. Michalowicz J, Duda W, Polish J. of Environ. Stud., 16(3), 347, 2007
  5. Knop A, Pilato LA, Phenolic resins: chemistry, applications and Performance, Springer Science & Business Media(2013).
  6. World Health Organization (WHO), World Health Organization, vol. 2, Geneva, Switzerland(1984).
  7. Dutta NN, Brothakur S, Baruah R, Water Environ. Res., 70, 4, 1998
  8. Ghodbane I, Nouri L, Hamdaoui O, Chiha M, J. Hazard. Mater., 152(1), 148, 2008
  9. Huang FC, Lee JF, Lee CK, Chao HP, Colloids Surf. A: Physicochem. Eng. Asp., 239, 41, 2004
  10. Vimonses V, Lei SM, Jin B, Chowd CWK, Saint C, Chem. Eng. J., 148(2-3), 354, 2009
  11. Ozcan AS, Erdem B, Ozcan A, J. Colloid Interface Sci., 280(1), 44, 2004
  12. Naseem R, Tahir SS, Water Res., 35, 3982, 2001
  13. Ozcan AS, Ozcan A, J. Colloid Interface Sci., 276(1), 39, 2004
  14. Witthuhn B, Klauth P, Klumpp E, Narres HD, Martinius H, Appl. Clay Sci., 28, 55, 2005
  15. Gonen Y, Rytwo G, J. Colloid Interface Sci., 299(1), 95, 2006
  16. Bhattacharyya KG, Sen Gupta S, J. Colloid Interface Sci., 310(2), 411, 2007
  17. Koyuncu H, Appl. Clay Sci., 38, 279, 2008
  18. Shu YH, Li LS, Zhang QY, Wu HH, J. Hazard. Mater., 173(1-3), 47, 2010
  19. Christidis G, Appl. Clay Sci., 13, 79, 1998
  20. Hassani AH, Seif S, Javid AH, Borghei M, nt. J. Environ. Res., 2(3), 239, 2008
  21. Aghamohammadi N, Hamidi AA, Hasnain IM, Zinatizadeh AA, Saravi NH, Ghafari S, Int. J. Environ. Res., 1, 96, 2007
  22. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391, 2000
  23. Juang RS, Lin SH, Tsao KH, J. Colloid Interface Sci., 254 (2002).
  24. Ramos Vianna MMG, Franco JHR, Pinto CA, Valenzuela Diaz FR, Buchler PM, Braz. J. Chem. Eng., 21(2), 239, 2004
  25. Djebbar M, Djafri F, Bouchekara M, Djafri A, Appl. Water Science, 2, 77, 2012
  26. Diaz-Nava MC, Olguin MT, Solache-Rios M, J. Incl. Phenom. Macrocycl. Chem., 74, 67, 2012
  27. Hank D, Azi Z, Hocine SA, Chaalal O, Hellal A, J. Ind. Eng. Chem., 20(4), 2256, 2014
  28. Xu Y, Khan MA, Wang F, Xia, Lei W, Appl. Clay Sci., 162, 204, 2018
  29. Ren S, Deng J, Meng ZF, Wang T, Xie T, Xu SE, Powder Technol., 356, 284, 2019
  30. Ouallal H, Dehmani Y, Moussout H, Messaoudi L, Azrour M, Heliyon, 5, e01616, 2019
  31. Bouiahya K, Es-saidi I, El Bekkali C, Laghzizil A, Robert D, Nunzi JM, Saoiabi A, Colloids Interface Sci. Commun., 31, 100188, 2019
  32. Khalaf H, Bouras O, Perrichon V, Microp. Mater., 8, 141, 1997
  33. Boutahala M, Tedjar F, Solid State Ion., 61, 257, 1993
  34. Hajjaji M, Kacim S, Alami A, El-Bouadili A, El Mountassir M, Appl. Clay Sci., 20, 1, 2001
  35. Madejova J, Vib. Spectrosc., 31, 1, 2003
  36. Gadsden A, Infrared spectra of minerals and related inorganic compounds, The Butterworth group, UK(1975).
  37. Brunauer S, Emmet PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  38. Barrett EP, Joyner LG, Halenda PH, J. Am. Chem. Soc., 73, 373, 1951
  39. Thommes M, Kaneko K, Neimark AV , Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051, 2015
  40. Novikova L, Ayrault P, Fontaine C, Chatel G, Jerome F, Belchinskaya L, Ultrason. Sonochem., 31, 598, 2016
  41. Rouquerol F, Rouquerol J, Sing H, Academic Press London(1999).
  42. Tahani A, Karroua M, El Farissi M, Levitz P, van Damme H, Bergaya F, Margulies L, J. Chem. Phys., 96, 464, 1999
  43. He J, Zhou QH, Guo JS, Fang F, Environ. Sci. Pollut. R., 25, 22224, 2018
  44. Acisli O, Karaca S, Gurses A, Appl. Clay Sci., 142, 90, 2017
  45. Lagergren S, Vetenskapsakad KS, Handl. Band., 24, 1, 1898
  46. Ho YS, McKay G, Process. Biochem., 34, 451, 1999
  47. Weber WJ, Morris JC, Proc. Int. Conf., Water Pollution Symposium, vol. 2. Pergamon, Oxford, pp. 231(1962).
  48. El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A, J. Hazard. Mater., 161(1), 102, 2009
  49. Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS, J. Hazard. Mater., 95(1-2), 137, 2002
  50. Hameed BH, Colloids Surf. A: Physicochem. Eng. Asp., 307, 45, 2007
  51. Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM, Colloids Surf. A: Physicochem. Eng. Asp., 272, 89, 2006
  52. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  53. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1916
  54. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng. Chem. Fundam., 5, 212, 1966
  55. Freundlich HMF, Z. Phys. Chem, 57, 385, 1996
  56. Temkin MI, Pyzhev V, Acta Physiochim., 12, 327, 1940
  57. Fu QL, Deng YL, Li HS, Liu J, Hu HQ, Chen SW, Sa TM, Appl. Surf. Sci., 255(8), 4551, 2009
  58. Aksu Z, Tatli AI, Tunc O, Che. Eng. J., 142, 23, 2008