Issue
Korean Chemical Engineering Research,
Vol.58, No.4, 596-603, 2020
핵융합 공정주기에서의 생산 계획 최적화
Mathematical Modeling of Scheduling Problems for the Fusion Fuel Cycle
본 연구에서는 화학공정 최적화에 사용되는 생산계획최적기법을 도입하여 핵융합 공정에서의 삼중수소 재고량을 최소로 유지하는 수학적 모델을 구축하여 최적 운전 시나리오를 도출하였다. 핵융합 발전을 위한 공정 중 연료주기 공정(fuel cycle)은 반응연료인 중수소와 삼중수소를 저장 하고 공급하는 시스템과 핵융합 반응 배가스로부터 이를 회수 및 분리하는 세부 공정들로 구성되어 있다. 이들 공정들은 삼중수소가 방사성 물질이라는 것을 제외하면 대부분 촉매반응과 분리공정으로 이루어져 화공플랜트에 적용된 기술과 유사한 특성이 많아 화학공정에 사용되는 스케줄링 기법을 통해 최적 운전 시나리오를 도출 가능하다. 본 연구에서는 핵융합로의 다양한 장치의 특성을 반영해서, 펌프내부의 삼중수소량을 최소로 하는 최적 재생주기를 구하고, 구해진 최적 재생주기 결과를 반영하여 후단의 트리튬 플랜트에서의 최적 운전 시나리오를 확인해 보았다. 구축된 모델은 실제 토카막 시나리오에 적용되어 ITER 연료주기 내 공정의 연료흐름 및 밸런스 분석에 활용되었다.
In this study, a mathematical model for optimal operation of the fusion fuel cycle is developed based on scheduling approach. The fusion fuel cycle consists of a system for storing and supplying deuterium and tritium, and receiving and separating process after the fusion reaction. Except that tritium is a radioactive material, most of these processes consist of catalytic reactions and separation process. For these reasons, it is possible to apply scheduling approach which is also widely utilized to chemical plants to derive the optimal operating scenarios. The developed model determined the optimal regeneration cycle to minimize the amount of tritium inside the vacuum pumps. Based on the characteristics of various device in the fusion reactor, the optimal tritium plant operation scenario is evaluated. The formulated model was applied to the actual tokamak scenario and utilized to analyze the fuel flow and balance of ITER fuel cycle.
[References]
  1. Cho S, Chang MH, Yun SH, Kang H, Jung KJ, Chung H, Koo D, Kim Y, Lee J, Song K, IEEE Trans. Plasma Sci., 38, 425, 2010
  2. Kondili E, Pantelides C, Sargent R, Comput. Chem. Eng., 17, 211, 1993
  3. Birewar DB, Grossmann IE, Ind. Eng. Chem. Res., 29, 570, 1990
  4. Chang MH, Yun SH, Kang HG, Cho S, Song KM, Kim D, Chung H, Camp P, Shu W, Willms S, Fusion Eng. Des., 89, 1557, 2014
  5. Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, J. Nucl. Mater., 390, 1, 2009
  6. Yun SH, Chang MH, Kang HG, Kim CS, Cho SY, Jung KJ, Chung HS, Song KM, Trans. Korean Hydrogen New Energy Soc., 23, 56, 2012
  7. Lee JU, Chang MH, Yun SH, Lee ES, Lee IB, Lee KH, Fusion Eng. Des., 109, 602, 2016
  8. Lee SY, Chang MH, Yun SH, Ha JK, Lee IB, Lee ES, Fusion Eng. Des., 136, 747, 2018
  9. Pearce RJ, Antipenkov A, Boussier B, Bryan S, Dremel M, Levesy E, Mayaux C, Wykes M, Fusion Eng. Des., 88, 809, 2013
  10. Day C, Antipenkov A, et al., Validated design of the ITER main vacuum pumping system, Proc. 20th Int. Conf. Vilamoura, 2004.
  11. Wykes M, Fusion Sci. Technol., 48, 39, 2005
  12. Lee SY, Chang MH, Lee JU, Yun SH, Ha JK, Lee IB, Lee ES, Fusion Eng. Des., 146, 2251, 2019
  13. Maravelias CT, Grossmann IE, Ind. Eng. Chem. Res., 42(13), 3056, 2003
  14. Lee SY, Chang MH, Yun SH, Ha JK, Lee IB, Lee ES, Fusion Eng. Des., 130, 21, 2018