Issue
Korean Chemical Engineering Research,
Vol.58, No.4, 550-564, 2020
증류탑 최적 설계를 위한 경험 법칙 제시 및 자동화
Heuristic Rules and Automation for Optimal Design of Distillation Column
증류탑은 경제적 효율성, 높은 신뢰성 및 자료 확보의 용이성으로 석유화학 공정 설계 시 화학 성분의 분리를 위해 적용되는 주된 기술 중 하나이다. 하지만, 기본적으로 에너지 소비 및 투자비가 높은 설비이기 때문에, 운전비와 투자비에 대한 Trade-Off 분석을 진행하여 가장 경제적인 증류탑 설계 진행이 필요하다. 본 연구에서는 가능한 많은 공정엔지니어의 활용을 위해 대중적 공정 모사 프로그램인 Aspen Plus를 사용하여 검토를 진행하였다. 증류탑 최적화 진행시의 설계 변수를 정의하여 공정 엔지니어의 주관적인 판단에 의한 설계 품질의 편차를 최소화 하였으며, 불필요한 검토 과정 배제 및 체계적/효율적인 절차를 수립하여 설계에 소요되는 시간 및 인력 소요를 최소화 하였다. 또한, 증류탑 단수 최적화 검토시 투자비의 신뢰성 있는 산출을 위해 APEA (Aspen Process Economic Analyzers) 프로그램을 도입하고, APEA 사용에 대한 효율적인 방법에 대해서도 다방면으로 검토하여 최적화 절차를 수립하였다.
Distillation columns are one of the main equipment used for the separation of chemical components in petrochemical process design. However, in spite of the efficient operation in wide range, and the advantage of data collection for equipment verification, the distillation columns are inherently known for high energy consumption and capital cost. Hence, the trade-off analysis needs to be done between investment cost and operation cost to develop the most economical distillation columns. This study was conducted using Aspen Plus, a popular process simulation program, in the pursuit of broad application by as many process engineers as possible. In this paper, design variables for optimization of distillation columns were defined to improve emphatically the design quality with reducing erratic practice of many engineers. In addition, by eliminating unnecessary reviewing step and establishing systematic and efficient procedures, the amount of time for design and human resources were minimized. Aspen Process Economic Analyzers (APEA) program was introduced in order to calculate the investment cost reliably, and the efficient systematic procedure for utilization of APEA was established.
[References]
  1. Kister HZ, Haas JR, Hart DR, Gill DR, Distillation design, McGraw-Hill, New York(1992).
  2. Peters MS, Timmerhaus KD, West RE, Plant design and economics for chemical engineers, 5th ed., McGraw-Hill, New York(2003).
  3. Towler G, Sinnott R, Chemical engineering design, Elsevier (2012).
  4. Seader JD, Henley EJ, Roper DK, Separation process principles, 3rd ed.(2011).
  5. Luyben WL, Distillation design and control using Aspen simulation, John Wiley & Sons(2013).Luyben, W. L., Distillation design and control using Aspen simulation, John Wiley & Sons(2013).
  6. Alfadala HE, Ahmad BM, Warsame AF, Computer Aided Chemical Engineering, Elsevier, 1279-1284(2005).
  7. https://esupport.aspentech.com/S_Article?id=000047303.
  8. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, synthesis and design of chemical processes, Pearson Education (2008).
  9. Fenske M, Industrial & Engineering Chemistry 24, 482-485(1932).
  10. Kirkbride CG, Petroleum Refiner, 23, 321, 1944