Issue
Korean Chemical Engineering Research,
Vol.58, No.4, 524-529, 2020
PEMFC의 고분자막에서 지지체가 고분자전해질 막 성능 및 전기화학적 내구성에 미치는 영향
Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC
고분자전해질 연료전지의 기계적 내구성을 높이기 위해 고분자막에 지지체를 넣은 강화막이 사용되고 있다. 지지체는 주로 e-PTFE를 사용하는데 소수성이고 이온전달이 안되므로 성능저하의 원인이 될 수 있다. 그래서 본 연구에서는 e-PTFE지지체가 PEMFC 성능과 전기화학적 내구성 미치는 영향에 대해 연구하였다. 본연구에서는 지지체가 들어간 강화막과 들어가지 않은 단일막(비강화막)을 비교하였는데, 지지체의 소수성 때문에 강화막의 물 확산계수가 단일막보다 낮았다. 강화막은 물확산 계수가 낮아 이온의 막 이동 저항이 단일막보다 높았다. 지지체의 낮은 수소투과도 때문에 강화막의 OCV가 단일막보다 높았다. 지지체가 수소투과도를 감소시킴으로서 라디칼 발생속도를 감소시켜 강화막의 전기화학적 내구성도 향상시킴을 보였다.
To increase the mechanical durability of the proton exchange membrane fuel cells, a reinforced membrane in which a support is placed in the polymer membrane is used. The support mainly uses e-PTFE, which is hydrophobic and does not transfer ions, which may cause performance degradation. In this study, we investigated the effect of e-PTFE support on PEMFC performance and electrochemical durability. In this study, the reinforced membrane with the support was compared with the single membrane (non-reinforced membrane). Due to the hydrophobicity of the support, the water diffusion coefficient of the reinforced membrane was lower than that of the single membrane. The reinforced membrane had a lower water diffusion coefficient, resulting in higher HFR, which is the membrane migration resistance of ions, than that of a single membrane. Due to the low hydrogen permeability of the support, the OCV of the reinforced membrane was higher than that of the single membrane. The support was shown to reduce the hydrogen permeability, thereby reducing the rate of radical generation, thereby improving the electrochemical durability of the reinforced membrane.
[References]
  1. Wang GJ, Yu Y, Liu H, Gong CL, Wen S, Wang XH, Tu ZK, Fuel Process. Technol., 179, 203, 2018
  2. Department of Energy, https://wwwenergygov/(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People’s Republic of China, http://wwwmostgovcn/eng(2016).
  6. Gore Enterprise Holdings, Inc, “Ion Conducting Membrane Having High Hardness And Dimensional Stability,” PCT/US2002/027338.
  7. Lai YH, Mittelsteadt CK, Gittleman CS, Dillard DA, J. Fuel Cell Sci. Technol., 6(2), 021002, 2009
  8. Spernjak D, Mukherjee PP, Mukundan R, Davey J, Hussey DS, Jcobson D, Borup RL, ECS Trans., 33(1), 1451, 2010
  9. MacKinnon SM, et al., Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 741 2009.
  10. Craig S, et al., Academic Press, Boston, Pages 15 2012.
  11. Crum M, Liu W, ECS Trans., 3(1), 541, 2006
  12. Tang YL, Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB, J. Power Sources, 175(2), 817, 2008
  13. Khattra NS, Lu ZW, Karlsson AM, Santare MH, Busby FC, Schmiedel T, J. Power Sources, 228, 256, 2013
  14. Kusoglu A, Santare MH, Karlsson AM, Cleghorn S, Johnson WB, J. Electrochem. Soc., 157(5), B705, 2010
  15. Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB, J. Power Sources, 170(2), 345, 2007
  16. Lee HR, Lee SH, Hwang BC, Na IC, Lee JH, Oh SJ, Park KP, Korean Chem. Eng. Res., 54(2), 181, 2016
  17. Marchi CS, Somerday BP, SANDIA REPORT, Sandia National Lab., SAND2012-7321, Printed September 2012.
  18. Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D, J. Phys. Chem. C, 119, 25145, 2015
  19. Kocha SS, Yang JDL, Yi JS, AIChE J., 52(5), 1916, 2006
  20. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018