Issue
Korean Chemical Engineering Research,
Vol.58, No.3, 486-492, 2020
졸-겔법으로 제조된 Bismuth ferrite의 가시광 광촉매 특성
Visible Light Photocatalytic Properties of Bismuth Ferrite Prepared By Sol-Gel Method
가시광 LED 빛에 반응하는 페로브스이트형 bismuth ferrite (BFO) 광촉매 제조방법과 가시광 광촉매 반응 특성을 조사하였다. BFO는 졸-겔법에 따라 제조하였다. 제조된 BFO는 주로 BiFeO3 구조로 이루어져 있으며 Bi24Fe2O39 구조도 포함한 나노 크기의 결정을 이루고 있었다. BFO 나노 결정은 약 600 nm까지 자외선과 가시광선을 흡수하는 것을 UV-visible 확산 반사 스펙트럼으로부터 확인하였다. 확산 반사 스펙트럼으로부터 구한 BFO의 밴드갭은 약 2.2 eV로 나타났다. 포름알데히드는 585 nm와 613 nm 파장의 가시광 LED 램프의 빛과 BFO 광촉매와의 광반응에 의하여 분해되어 제거되었다. BFO의 가시광 LED 빛에서 광촉매 활성은 BFO의 좁은 밴드갭에서 기인하는 것으로 보인다.
The method for preparing a perovskite-type bismuth ferrite (BFO) photocatalyst which reacts to visible LED light and the characteristics of visible light photocatalysis were investigated. BFO was prepared according to the sol-gel method. The prepared BFO consisted mainly of BiFeO3 structure and formed a nano-sized crystal including Bi24Fe2O39 structure. The BFO nano crystallines were identified from the UV-visible diffuse reflectance spectra to absorb UV and visible light up to about 600 nm. The bandgap of the BFO determined from the diffuse reflectance spectrum was about 2.2 eV. Formaldehyde was decomposed by the photoreaction of BFO photocatalysts with the visible light LED lamps with wavelengths of 585 nm and 613 nm. The narrow bandgap of BFO led to elicit BFO photocatalytic activity in visible LED light.
[References]
  1. Fujishima A, Honda K, Nature, 238, 37, 1972
  2. Yang XY, Wolcott A, Wang GM, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y, Nano Lett., 9, 2331, 2009
  3. Wolcott A, Smith WA, Kuykendall TR, Zhao YP, Zhang JZ, Adv. Funct. Mater., 19(12), 1849, 2009
  4. Zhang ZH, Hossain MF, Takahashi T, Appl. Catal. B: Environ., 95(3-4), 423, 2010
  5. Weinhardt L, Blum M, Bar M, Heske C, Cole B, Marsen B, Miller EL, J. Phys. Chem. C, 112, 3078, 2008
  6. Wu HJ, Zhang ZH, Int. J. Hydrog. Energy, 36(21), 13481, 2011
  7. Tian J, Leng Y, Zhao Z, Xia Y, Sang Y, Hao P, Nano Energy, 11, 419, 2015
  8. Sharotri N, Sud D, New J. Chem., 39, 2217, 2015
  9. Sharotri N, Sud D, Desalin. Water Treat., 57, 8776, 2016
  10. Zhang L, Jing D, She X, Liu H, Yang D, Lu Y, Li J, Zheng Z, Guo L, J. Mater. Chem. A, 2, 2071, 2014
  11. Zhang M, Shao C, Mu J, Zhang Z, Guo Z, Zhang P, Liu Y, Cryst. Eng. Comm., 14, 605, 2012
  12. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269, 2001
  13. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M, J. Photochem. Photobiol. A-Chem., 148, 257, 2002
  14. Dvoranova D, Brezova V, Mazur M, Malati MA, Appl. Catal. B: Environ., 37(2), 91, 2002
  15. Kemp TJ, McIntyre RA, Polym. Degrad. Stabil., 91, 165, 2006
  16. Kapoor PN, Uma S, Rodriguez S, Klabunde KJ, J. Mol. Catal. A-Chem., 229(1-2), 145, 2005
  17. Rauf MA, Meetani MA, Hisaindee S, Desalination, 276(1-3), 13, 2011
  18. Jedsukontorn T, Ueno T, Saito N, Hunsom M, J. Alloy. Compd., 757, 188, 2018
  19. Tokura Y, Seki S, Nagaosa N, Rep. Prog. Phys., 77, 76501, 2014
  20. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M, Huijben M, Yang CH, Balke N, Ramesh R, J. Phys. Condens. Matter, 20, 434220, 2008
  21. Eerenstein W, Mathur ND, Scott JF, Nature, 442, 759, 2006
  22. Yi HT, Choi T, Choi SG, Oh YS, Cheong SW, Adv. Mater., 23(30), 3403, 2011
  23. Ji W, Yao K, Liang YC, Adv. Mater., 22(15), 1763, 2010
  24. Catalan G, Scott JF, Adv. Mater., 21(24), 2463, 2009
  25. Yang SY, Martin LW, Byrnes SJ, Conry TE, Basu SR, et al., Appl. Phys. Lett., 95, 062909, 2009
  26. Li S, Lin YH, Zhang BP, Wang Y, Nan CW, J. Phys. Chem. C, 114, 2903, 2010
  27. Brody PS, Solid State Commun., 12, 673, 1973
  28. Ichiki M, Morikawa Y, Nakada T, Jpn. J. Appl. Phys., 41, 6993, 2002
  29. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou Z, Liu JM, Adv. Mater., 19(19), 2889, 2007
  30. Zhang X, Lv J, Bourgeois L, Cui J, Wu Y, Wang H, Webley PA, New J. Chem., 35, 937, 2011
  31. Wang X, Lin Y, Zhang ZC, Bian JY, J. Sol-Gel Sci. Technol., 60, 15, 2011
  32. Guo R, Fang L, Dong W, Zheng F, Shen M, J. Phys. Chem. C, 114, 21390, 2010
  33. Soltani T, Lee BK, J. Hazard. Mater., 316, 122, 2016
  34. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  35. Kubelka P, Munk F, Zeit. Fur. Tech. Phys., 12, 593, 1931
  36. Vijayasundaram SV, Kanagadurai R, Int. J. Chem.Tech. Res., 8, 436, 2015
  37. Rao GVS, Rao CNR, Ferraro JR, Appl. Spectrosc., 24, 436, 1970
  38. Yamaguchi O, Narai A, Komatsu T, Shimizu K, J. Am. Ceram. Soc., 69, 256, 1986
  39. Yang H, Xian T, Wei ZQ, Dai JF, Jiang JL, Feng WJ, J. Sol-Gel Sci. Technol., 58, 238, 2011
  40. Hua K, Wang W, Wang Y, Xu J, Jia D, Lu Z, Zhou Y, J. Alloy. Compd., 509, 2192, 2011
  41. Wang X, Lin Y, Ding XF, Jiang JG, J. Alloy. Compd., 509, 6585, 2011
  42. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS, Surf. Interface Anal., 36, 1564, 2004
  43. http://www.lasurface.com/database/elementxps.php.