Issue
Korean Chemical Engineering Research,
Vol.58, No.3, 416-423, 2020
100 kW 이상의 태양광 발전단위에서 전방 잡초 그림자 영향 분석에 의한 비정상 데이터 표준화 연구
A Study of Standardization of Detecting Abnormal Data by Front Weed’s Shadow Effect in over 100 kW Photo Voltaic Power Generation Unit
대부분의 태양광 발전시설물은 평지에 설치가 되는 것이 일반적이지만 소형 발전시설의 경우는 경사진 임야 등에 설치되는 경우도 많다. 그 외에는 드물게 건물의 옥상이나 콘크리트 위에 설치되는 경우가 있으나 이는 대부분 25 kW 미만의 소규모 설치이다. 일반 평지나 임야 등에 설치가 될 경우 관리를 지속적으로 하지 않으면 잡초가 자라고 일정 높이 이상 자라게 된 잡초는 태양광 모듈에 그림자의 영향을 줄 수 있게 된다. 그러나 잡초가 조금 자란 것이 영향을 주는지 주지 않는지 판단하기 힘들고 지속적인 관리를 위해서는 관리 비용이 발생하기 때문에 잡초가 태양광 발전에 영향을 주는 시점에서 정확하게 관리를 해준다면 가장 최소한의 관리비용으로 최대한의 태양광 발전량을 가져 올 수 있을 것으로 판단된다. 본 연구에서는 잡초가 의한 태양광 모듈의 발전에 영향을 미치는 형태를 모니터링을 통한 발전량 데이터를 분석하여 그 유형을 파악을 하고 모듈에서 잡초의 그림자 영향이 출력의 감소에 어떠한 영향을 주는지 실험을 통해 분석하였다. 이를 바탕으로 잡초의 영향을 모니터링 데이터 상의 수치로 기준을 정하였다. 또한 잡초의 영향을 장기적으로 방치를 하였을 경우 나타나게 되는 현상인 핫스팟(Hot spot) 발생의 기준을 수치적으로 표준화 하였다.
Majority of over 100 kW capacity photo voltaic (PV) power generation system was constructed on the plate ground of soil. Rarely PV system installed on concrete or building but it usually be under 25 kW capacity. On the soil ground the weeds growen up and it’s shadow influenced to decrease of amount of PV power generation. This work analysis the weeds shadow’s effect to decrease of PV power generation with 100 kW capacity of real PV power generation system in Yeungnam University, Finally the weed shadow“s influence value through the real field monitoring Data is suggested for give a standard management time of weeds to avoid the negative influence on whole power plant. Moreover the hot spot which is generated by long term partial shallow on PV module also can detected with the result of this work. It also suggested as a standard value of monitoring Data.
[References]
  1. The Export-import Bank Of Korea, 2020 Quarterly Report.
  2. Kim J, et al., J. of Korean Society of Environmental Technology, 12, 141-147(2011).
  3. Yoon B, et al., New & Renewable Energy, 12, 14-23(2016).
  4. Nam Y, et al., Current Photovoltaic Research, 2, 135, 2014
  5. Ji S, Yeungnam University M. A. Thesis (2016).
  6. Singh JP, Walsh TM, Aberle AG, Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition, 3263-3266(2012).
  7. Kim M, Ji S, Oh SY, Jung JH, Current Photovoltaic Research, 4(2), 80, 2016
  8. Ahn HW, Park GY, Journal of the Korean Solar Energy Society, 32(3), 26-32(2012).
  9. Kaushika ND, Rai AK, Energy, 32(5), 755, 2007
  10. Picault D, Raison B, Bacha S, de la Casa J, Aguilera J, Sol. Energy, 84(7), 1301, 2010
  11. Noh HJ, Lee DY, Hyun DS, IEEE IES, 2, 1113, 2002
  12. Lynch WA, Salameh M, Sol. Energy, 45, 65, 1990
  13. Spence JW, Sol. Energy, 42, 393, 1989
  14. Walraven R, Sol. Energy, 20, 393, 1978
  15. Picault D, Raison B, Bacha S, Aguilera J, De La Casa J, EEEIC 2010 9th Conference, 37-40(2010).
  16. Ahn HW, J. of Korean Solar Energy Society, 29(1), 58-63(2009).
  17. Ko JS, Chung DH, Journal of Korean Institute of Illuminating and Electrical Installation Engineers, 27(2), 36-44(2013).
  18. Kim S, Kang KH, Ahn H, Ahn DY, Yu GJ, The Korean Solar Energy Society Conference, 257-262(2008).
  19. Ji YH, Jung DY, Kim JG, Kim JH, Lee TW, Won CY, IEEE Tr. on Power Electronics, 26(4), 1001, 2011
  20. Korytowski MJ, Grainger BM, IEEE PES Innovative Smart Grid Technologies, 1-7(2012).
  21. Noguchi T, Togashi S, Nakamoto R, IEEE Tr. on Industrial Electronics, 49(1), 217, 2002
  22. Kim E, Kang S, Kim J, New & Renewable Energy, 7(2), 28-35(2011).