Issue
Korean Chemical Engineering Research,
Vol.58, No.3, 381-389, 2020
100% 신재생에너지 자원 기반 에너지 공급을 위한 태양광, 풍력 및 바이오 발전의 통합 전략 및 경제성 평가
Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System
본 연구에서는 다양한 신재생 에너지원 기반 전력 공급 시스템 구축하고, 각 시스템의 최적 전력 공급 비용을 비교 분석 하였다. 특히, 풍력 및 태양광 등 대표적인 신재생에너지 생산 기술과 더불어 대형 에너지 저장 시스템 및 바이오매스 기반 전력 생산 기술을 포함함으로써, 신재생에너지 자원의 간헐성 및 에너지 공급과 수요의 불균형의 한계를 극복하였다. 본 연구에서 제안한 6가지의 신재생 에너지원 기반 전력 공급 시스템을 실제 제주도 전력 공급 문제에 적용함으로써, 제주도 지역의 최적 에너지 시스템을 규명하였으며, 다양한 에너지 생산 기술의 조합의 효과를 분석하였다. 분석 결과, 태양광 및 풍력 기반 전력 공급 단가는 각각 0.18, 0.28 $/kWh로 개별 자원 기반의 에너지 생산 시스템의 기존 전력망을 통한 공급 단가에 비해 경쟁력이 낮았다. 또한 자원의 간헐성 및 공급과 수요의 불균형 등 단일 자원 기반의 단점을 효과적으로 개선하기 위하여 3가지 신재생 자원 및 대형 에너지 저장 시스템을 포함한 하이브리드 공급 시스템의 경제적 효과를 분석하였다. 그 결과 기존 전통적 전력망 공급과 가격 경쟁력을 갖는 0.08 $/kWh 수준의 100% 신재생에너지 기반 전력 공급 시스템 구축이 가능함을 규명하였다.
This study analyzed the optimal electricity cost of a 100% renewable energy source (RES) based system. Especially energy storage system (EES) and supplementary biopower system as well as photovoltaic (PV) and wind power component were included in the proposed RES-based system to overcome the intermittence of RESs and to efficiently balance energy supply and demand. To comparatively analyze the levelized cost of electricity (LCOE) of different RES-based systems, six scenarios were developed according to the involved RESs: PV, wind, PV/wind, PV/ biopower, wind/biopower, and PV/wind/biopower systems. We then applied the proposed systems to build a 100% RESbased system in Jeju Island, Korea. As a result, the single component based system, PV and wind power system of 0.18 and 0.28 $/kWh, respectively, cannot compete with the economics of existing electricity grid. However, the optimal LCOE of the hybrid system where PV and wind power are used as main supply options and biopower as supplementary option was identified to be 0.08 $/kWh, which can compete with the economics of an existing electricity grid.
[References]
  1. Pachauri RK, et al., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ipcc(2014).
  2. Oh J, Korea energy economic institute (2015).
  3. Yoo K, Park E, Kim H, Ohm JY, Yang T, Kim KJ, Chang HJ, Del Pobil AP, Sustainability, 6(11), 7883, 2014
  4. Park YC, Kim DS, Huh J, Kim YG, “New and Renewable Energy Policies of Jeju Island in Korea,” (057), 2446-2453(2011).
  5. Kim M, Kim J, Korean Chem. Eng. Res., 53(2), 156, 2015
  6. Khan MJ, Yadav AK, Mathew L, Renew. Sust. Energ. Rev., 76, 577, 2017
  7. Ahmad J, Imran M, Khalid A, Iqbal W, Ashraf SR, Adnan M, Ali SF, Khokhar KS, Energy, 148, 208, 2018
  8. Hur K, World Environment and Island Studies, 4(2), 21-43(2014).
  9. Han S, Shin HW, “Policy Trends of Renewable Energy in Korea,” 218-221(2014).
  10. Baneshi M, Hadianfard F, Energy Conv. Manag., 127, 233, 2016
  11. Ngan MS, Tan CW, Renew. Sust. Energ. Rev., 16(1), 634, 2012
  12. Kaabeche A, Ibtiouen R, Sol. Energy, 103, 171, 2014
  13. Ogunjuyigbe ASO, Ayodele TR, Akinola OA, Appl. Energy, 171, 153, 2016
  14. Singh G, Baredar P, Singh A, Kurup D, Journal of Energy Storage, 12, 78-86(2017).
  15. Lee B, Korea Environment Institute (KEI) Report 2016-05(2016).
  16. Act RES, Renewable Energy Sources Act-RES Act(2014).
  17. Lee M, Kim J, Korean Journal of Chemical Engineering, 34(6), 1604-1618(2017).
  18. Lee DH, Han SK, Kim JY, Korean Chem. Eng. Res., 55(3), 332, 2017
  19. Energy H, Homer Energy and National Renewable Energy Laboratory, Colorado(2011).
  20. Miller NW, et al., “Dynamic Modeling of GE 1.5 and 3.6 MW Wind Turbine-Generators for Stability Simulations,” 3, 1977-1983(2003).
  21. IRENA I, Report, International Renewable Energy Agency, Abu Dhabi(2018).
  22. KEPCO, “Korea Electric Power Corporation, www.kepco.co.kr.”
  23. KMA, “Korea Meteorological Administration, www.kma.go.kr.”
  24. KOSIS, “Korean Statistical Information Service, http://kosis.kr.”