Issue
Korean Chemical Engineering Research,
Vol.58, No.3, 356-361, 2020
프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 °C 에서 산소농도와 압력의 변화에 따른 실험적 연구
Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 °C for the Assessment of the Risks of Fire and Explosion of Propylene
프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기위하여 200 °C 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다. 본 연구에서는 프로필렌-질소-산소를 사용하여 온도 200 °C서 압력의 변화(0.10MPa, 0.15MPa, 0.20 MPa, 0.25 MPa)에 따른 실험적 연구를 수행하였다. 산소농도가 21%일 때 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 폭발 하한계는2.2%에서 1.9%로 감소하였으며, 폭발 상한계는 14.8%에서 17.6%로 증가하였다. 또한 최소산소농도는 10.3%에서 10.0%로 감소하여 압력이 증가할수록 폭발 범위가 넓어져 위험성이 증가하였다. 폭발압력은 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 1.84MPa에서 6.04 MPa로 증가하였으며, 최대 폭발압력상승속도는 90 MPa/s에서 298 MPa/s로 크게 증가 하였다. 고온 및 고압에서는 폭발의 위험성이 증가하므로 프로필렌을 사용하는 사업장의 폭발사고 예방을 위한 기초 자료를 제공하고자 한다.
Propylene is widely used in petrochemical manufacturing at over 200 °C. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 °C. At 21% oxygen, as pressure increased from 0.10 MPa to 0.25 MPa, lower explosion limit (LEL) decreased from 2.2% to 1.9% while upper explosion limit (UEL) increased from 14.8% to 17.6%. In addition, minimum oxygen concentration (MOC) decreased from 10.3% to 10.0%, indicating higher risks with the expanded explosive range as pressure increased. With increase of pressure from 0.10 MPa to 0.25 MPa, explosion pressure increased from 1.84 MPa to 6.04 MPa, and the rate of rise of maximum explosion pressure increased drastically from 90 MPa/s to 298 MPa/s. It is hoped that these results can be used as basic data to prevent accidents in factories using propylene.
[References]
  1. Liu S, Gao X, Zhang S, The 31th Chinese Control and Decision Conference(CCDC) IEEE, 1702-1707(2019).
  2. Crowl DA, Louvar JF, Pearson Education International, Boston, 225-260(2011).
  3. Korzynski MD, Dinca M, ACS Central Science, 10-12(2017).
  4. Kim WK, KiM JH, Ryu JW, Choi JW, Korean Chem. Eng. Res., 55(5), 618, 2017
  5. NFPA 68, “Guide for Venting Deflagrations”, National Fire Protection (1998).
  6. NFPA 68, “Standard on Explosion Protection by Deflagrations Vending”, Quincy, MA(2013).
  7. Lee CJ, Kim LH, Korean Chem. Eng. Res., 57(6), 790, 2019
  8. Mathieu D, Ind. Eng. Chem. Res., 52(26), 9317, 2013
  9. Razus D, Oancea D, Ionescu, NI, Rev. Rou. Chim., 45, 319, 2000
  10. Yu XZ, Yan XQ, Ji WT, Luo C, Yao FT, Yu JL, J. Loss Prev. Process Ind., 59, 100, 2019
  11. Giurcan V, Mitu M, Razus D, Oancea D, Fire Safety J., 111, 102939, 2020
  12. Luo ZM, Liu LT, Cheng FM, Wang T, Su B, Zhang J, Gao SS, Wang C, J. Loss Prev. Process Ind., 58, 8, 2019
  13. Jo YD, J. Korean Institute of Gas, 21(4), 1-5 (2017).
  14. Choi YJ, Heo JM, Kim JH, Choi JW, J. Korea Academia Instial Cooperation Society, 20(7), 599-606(2019).
  15. Beak JH, Lee HJ, Jang CB, J. Korean Society of Safety, 31(3), 162-167(2016).
  16. Zhang B, Xiu GL, Bai CH, Fuel, 124, 125, 2014
  17. Chen SP, Shen H, Zhu QY, Liang D, J. Loss Prev. Process Ind., 61, 298, 2019
  18. Razus D, Brinzea V, Mitu M, Oancea D, J. Hazard. Mater., 174(1-3), 548, 2010
  19. Ha DM, Korean Chem. Eng. Res., 56(4), 474, 2018
  20. Leffler WL, Natural Gas Liquids: A Nontechnical Guide, PennWell Books, Tulsa, Oklahoma, USA, 112-115(2014).
  21. Cengel YA, Cimbala JM, Mc Graw-Hill, New York, 40-42(2019).
  22. Yan XT, Xu Y, Springer, London, 29-30(2010).
  23. ASTM E918-83, Standard Practice for Determinimg Limits of Flammability of Chemicals at Elecated Temperature and Pressure, PA: ASTM International(2011).