Issue
Korean Chemical Engineering Research,
Vol.58, No.2, 293-300, 2020
Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산
Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction
홍조류인 Eucheuma spinosum은 카라기난을 주된 다당으로 함유하고 있으며 Indonesia, Malaysia, Philippines, China, Tanzania 등지에서 상업적으로 생산되고 있다. 본 연구에서는 E. spinosum을 대상으로 FeCl3-촉매 수열반응을 통하여당과 화학중간체(5-HMF, levulinic acid, formic acid)로 전환하고자 하였다. 통계적 실험법(3-수준-3-인자의 Box-Behnken design)을 적용하여 반응인자(반응온도, 촉매농도, 반응시간)의 최적화와 영향을 평가하였다. 최적화 결과, 5-HMF의 농도는 160 °C, 0.4M FeCl3, 10 min에서 2.96 g/L가 생성되었다. Levulinic acid와 formic acid의 최적 조건은 200 °C, 0.6M FeCl3, 30 min으로 결정되었고, 농도는 각각 4.26 g/L와 3.77 g/L이었다.
Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 °C, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 °C, 0.6M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.
[References]
  1. Demirbas A, Prog. Energy Combust. Sci., 33(1), 1, 2007
  2. Kamm B, Gruber PR, Kamm M, Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2006).
  3. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499, 2013
  4. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342, 2007
  5. Kim YW, Shin HJ, Korean J. Chem. Eng., 34(12), 3163, 2017
  6. Siripong P, Doungporn P, Yoo HY, Kim SW, Korean J. Chem. Eng., 35(12), 2413, 2018
  7. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41, 2010
  8. Jeong GT, Park DH, KSBB Journal, 26, 341, 2011
  9. Jeong GT, Kim SK, Park DH, Bioresour. Technol., 181, 1, 2015
  10. Park MR, Kim SK, Jeong GT, Algal Res., 31, 116, 2018
  11. Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303, 2016
  12. Kim DH, Lee SB, Kim SK, Park DH, Bioenerg. Res., 9, 1155, 2016
  13. Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong GT, Kim SK, J. Microbiol. Biotechnol., 25, 856, 2015
  14. Kim MJ, Kim JS, Ra CH, Kim SK, KSBB Journal, 28(5), 315, 2013
  15. Zhang HD, Ye GY, Wei YT, Li X, Zhang AP, Xie J, Bioresour. Technol., 229, 96, 2017
  16. Zheng XJ, Zhi ZH, Gu XC, Li XY, Zhang R, Lu XB, Fuel, 187, 261, 2017
  17. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/bridge(2004).
  18. Kim HS, Jeong GT, Korean J. Chem. Eng., 35(11), 2232, 2018
  19. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290, 2018
  20. Chemical Economics Handbook, 2016. Formic acid. https://www.ihs.com/products/formic-acid-chemical-economics-handbook.html. (Accessed 07 Feb. 2020).
  21. Zhou D, Hou Q, Liu W, Ren X, J. Ind. Eng. Chem., 47, 281, 2017
  22. Joo F, ChemSusChem, 1(10), 805, 2008
  23. Banerji A, Balakrishnan M, Kishore VVN, Appl. Energy, 104, 197, 2013
  24. Estrada-Martinez R, Favela-Torres E, Soto-Cruz NO, Escalona-Buendia HB, Saucedo-Castaneda G, Biotechnol. Bioproc. E, 24(2), 401, 2019
  25. Park MR, Kim SK, Jeong GT, Biotechnol. Bioproc. E., 23(3), 302, 2018
  26. Jeong GT, Korean J. Microbiol. Biotechnol., 42(2), 177, 2014