Issue
Korean Chemical Engineering Research,
Vol.58, No.2, 280-285, 2020
Constitutive Expression of Lipase on the Cell Surface of Escherichia coli using OmpC Anchoring Motif
We have developed a constitutive display system of the Pseudomonas fluorescens SIK W1 TliA lipase on the cell surface of Escherichia coli using E. coli outer membrane protein C (OmpC) as an anchoring motif, which is an economical compared to induced system. For the constitutive expression of truncated OmpC-TliA fusion proteins, gntT104 promoter was employed. Cell growth was not affected by over expression of fusion protein during entire culture time, suggesting cell lysis was not a problem. The localization of truncated OmpC-TliA fusion protein on the cell surface was confirmed by immunofluorescence microscopy and measuring whole cell lipase activity. Constitutively displayed lipase was very stable, retaining activity enantioselectivity throughout the five repeated reactions. These results suggest that OmpC from E. coli be a useful anchoring motif for displaying enzymes on the cell surface without any inducers, and this stable surface display system can be employed for a broad range of biotechnological applications.
[References]
  1. Jaeger KE, Dijkstra BW, Reetz MT, Annu. Rev. Microbiol., 53, 315, 1999
  2. Jaeger KE, Eggert T, Curr. Opin. Biotechnol., 13(4), 390, 2002
  3. Reetz MT, Curr. Opin. Chem. Biol., 6(2), 145, 2002
  4. Stergiou YS, Foukis A, Filippou M, Koukouritaki M, et al., Biotechnol. Advan., 31(8), 1846, 2013
  5. Gotor-Fernandez V, Brieva R, Gotor V, J. Mol. Catal. B-Enzym., 40(3-4), 111, 2006
  6. Rodrigues RC, Virgen-Ortiz JJ, dos Santos JCS, Alcantar AR, Barbosa O, Ortiz C, Fernandez-Lafuente R, Biotechnol. Adv., 37(5), 746, 2019
  7. Van Beilen JB, Li Z, Curr. Opin. Biotechnol., 13(4), 338, 2002
  8. Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R, Chem. Soc. Rev., 42(15), 6290, 2013
  9. Linqiu C, Carrier-bound immobilized enzymes: principles, application and design, WILEY-VCH, Weinheim, Germany (2005).
  10. Krajewska B, Enzyme Microb. Technol., 35(2-3), 126, 2004
  11. Shiraga S, Kawakami M, Ishiguro M, Ueda M, Appl. Environ. Microbiol., 71(8), 4335, 2005
  12. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss RI, Nat. Biotechnol., 15, 29, 1997
  13. Lee SY, Choi JH, Xu J, Trends Biotechnol., 21, 45, 2003
  14. Smith MR, Khera E, Wen F, Ing. Eng. Chem. Res., 54(16), 4021, 2015
  15. Liu Z, Ho SH, Hasunuma T, Chang JS, Ren NQ, Kondo A, Bioresour. Technol., 215, 324, 2016
  16. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A, Appl. Environ. Microbiol., 68(9), 4517, 2002
  17. Shimazu M, Nguyen A, Mulchandani A, Chen W, Biotechnol. Prog., 19(5), 1612, 2003
  18. Lee SH, Choi JI, Park SJ, Lee SY, Park BC, Appl. Environ. Microbiol., 70, 5074, 2004
  19. Han ZL, Han SY, Zheng SP, Lin Y, Appl. Microbiol. Biotechnol., 85(1), 117, 2009
  20. Sambrook J, Russell DW, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001).
  21. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Colladovides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y, Science, 277(5331), 1453, 1997
  22. Xu Z, Lee SY, Appl. Environ. Microbiol., 65, 5142, 1999
  23. Park SJ, Park JP, Lee SY, Fems Microbiol. Lett, 214, 217, 2002
  24. Lee SH, Choi JI, Han MJ, Choi JH, Lee SY, Biotechnol. Bioeng., 90(2), 223, 2005
  25. Jeanteur D, Lakey JH, Pattus F, Mol. Microbiol., 5, 2153, 1991
  26. Matsumoto T, Ito M, Fukuda H, Kondo A, Appl. Microbiol. Biotechnol., 64(4), 481, 2004
  27. Lee H, Park SJ, Han MJ, Eom GT, Choi MJ, Kim SH, Oh YH, Song BK, Lee SH, Biotechnol. Lett., 35(10), 1677, 2013