Issue
Korean Chemical Engineering Research,
Vol.58, No.2, 266-272, 2020
Chitosan으로부터 균일 산 촉매를 이용한 Ethyl Levulinate의 합성
Synthesis of Ethyl levulinate from Chitosan Using Homogeneous Acid Catalyst
본 연구에서는 갑각류의 껍질로부터 추출한 chitosan으로부터 황산을 촉매로 사용하여 가수분해 및 에스테르화 반응과 반응표면분석 실험계획법을 적용하여 화학 원료 및 연료로 사용 가능한 ethyl levulinate의 생산 가능성을 조사하였다. 반응물 중 수분함량의 영향을 조사한 결과, chitosan의 가수분해와 동시에 탈수반응과 ethyl levulinate로의 에스테르화와 반응은 5% 수분함량에서 가장 높았다. 반응표면분석 실험계획법을 이용하여 반응인자를 최적화한 결과, 200 °C, 3.19% chitosan, 0.49M 황산 촉매, 5% 수분함량(95% 에탄올 용매), 그리고 58분의 반응조건에서 30.1%의 ethyl levulinate의 생성 수율을 얻었다. 또한, ethyl levulinate의 생성 수율은 반응의 가혹도가 증가할수록 증가하는 경향을 나타내었다. 이러한 결과는 chitosan이 화학 원료 및 연료의 생산에 사용될 수 있는 바이오매스로서의 잠재력이 있다고 판단된다.
In this study, the production of ethyl levulinate from chitosan using successive acid-catalyzed hydrolysis and esterification was investigated. To optimize and analysis the reaction factors and heir reciprocal interaction, response surface methodology was introduced. In the effect of water content in ethanol solvent, the production yield of ethyl levulinate was high at 5% water content (or 95% ethanol). As a result of optimization of reaction factors, 30.1% ethyl levulinate yield was obtained under the condition of 200 °C, 3.19% chitosan, 0.49M sulfuric acid, 5% water content, and 58 min. Finally, the formation yield of ethyl levulinate was tended to enhance by increase of combined severity factor. This result indicated that the potential of chitosan as feedstock for production of chemicals and fuels.
[References]
  1. Kamm B, Gruber PR, Kamm M, Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2006).
  2. Hulsey MJ, Green Energy & Environment, 3, 318-327(2018).
  3. Kim HS, Park MR, Jeon YJ, Kim SK, Hong YK, Jeong GT, Energy Technol., 6, 1747, 2018
  4. Kim HS, Jeong GT, Korean J. Chem. Eng., 35(11), 2232, 2018
  5. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290, 2018
  6. Park MR, Kim HS, Kim SK, Jeong GT, Korean Chem. Eng. Res., 56(1), 61, 2018
  7. Chen X, Yang H, Yan N, Chem. Eur. J., 22, 13402, 2016
  8. Yan N, Chen X, Nature, 524(7564), 155, 2015
  9. Davis SP, Chitosan: Manufacture, properties, and usage, Nova Science Publishers, Inc., New York(2011).
  10. Rinaudo M, Prog. Polym. Sci, 31(7), 603, 2006
  11. Muzzarelli RAA, Muzzarelli C, Adv. Polym. Sci., 186, 151, 2005
  12. Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N, ACS Sustainable Chem. Eng., 4, 3912, 2016
  13. Guan Q, Lei T, Wang Z, Xu H, Lin L, Chen G, Li X, Li Z, Ind. Crop. Prod., 113, 150, 2018
  14. Ahmad E, Alam MI, Pant KK, Haider MA, Green Chem., 18, 4804, 2016
  15. Xu G, Chang C, Fang S, Ma X, Renew. Energy, 78, 583, 2015
  16. Hao W, Tang X, Zeng X, Sun Y, Liu S, Lin L, BioResources, 10, 4191, 2015
  17. Chang C, Xu GZ, Jiang XX, Bioresour. Technol., 121, 93, 2012
  18. Park MR, Kim SK, Jeong GT, Biotechnol. Bioprocess Eng., 23, 302, 2018
  19. Banerji A, Balakrishnan M, Kishore VVN, Appl. Energy, 104, 197, 2013