Issue
Korean Chemical Engineering Research,
Vol.58, No.2, 257-265, 2020
Application of Flory-Treszczanowicz-Benson model and Prigogine-Flory-Patterson theory to Excess Molar Volume of Binary Mixtures of Ethanol with Diisopropyl Ether, Cyclohexane and Alkanes (C6-C9)
Densities (ρ) for binary mixtures of ethanol (1) + diisopropyl ether (DIPE) or cyclohexane or alkane (C6-C9) (2) were measured at 298.15 K, 308.15 K and 318.15 K. The excess molar volume ( ) of binary mixtures was calculated using ρ data and correlated with Redlich-Kister polynomial equation. The V EM values for binary mixtures of ethanol (1) + cyclohexane or n-alkane (C6-C9) (2) were positive, whereas for ethanol (1) + DIPE (2) these were negative. The magnitude of V EM values follows the order: cyclohexane > n-nonane > n-octane > n-heptane > n-hexane > DIPE. The V EM values have been interpreted qualitatively and also quantitatively in terms of Flory-Treszczanowicz-Benson (FTB) model and Prigogine-Flory-Patterson (PFP) theory. The V EM values predicted using FTB model agree well with experimental V EM values at all mole fractions. But the PFP theory describes well data in ethanol-rich region (x1 > 0.5) for all binary mixtures and is able to predict the sign of V EM curve for ethanol-lean region (x1 < 0.5) except for ethanol (1) + nonane (2) mixtures.
[References]
  1. Canosa J, Rodriguez A, Tojo J, Fluid Phase Equilib., 156(1-2), 57, 1999
  2. Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42, 2014
  3. Zhou XM, Chen Y, Wang C, Guo JT, Wen CY, J. Chem. Thermodyn., 87, 13, 2015
  4. Gahlyan S, Verma S, Rani M, Maken S, Asian J. of Chemistry, 30, 731-735(2018).
  5. Sim HW, Kim MG, Korean J. Chem. Eng., 33(1), 271, 2016
  6. Lee MH, You SS, Korean J. Chem. Eng., 334, 2027, 2017
  7. Dubey GP, Sharma M, J. Chem. Eng. Data, 52(2), 449, 2007
  8. Lee KH, Gu JE, Oh HY, Park SJ, Korean J. Chem. Eng., 35(8), 1710, 2018
  9. Contreras SM, J. Chem. Eng. Data, 46, 1149, 2001
  10. Ulbig P, Bubolz M, Kornek C, Schulz S, J. Chem. Eng. Data, 42(3), 449, 1997
  11. Cho JS, Lim JS, Kim JD, Lee YY, Chun HS, Korean Chem. Eng. Res., 29, 487, 1991
  12. Kashyap P, Rani M, Tiwari DP, Park SJ, Korean J. Chem. Eng., 36(11), 1922, 2019
  13. Atik Z, Lourddani K, J. Solution Chem., 35, 1453, 2006
  14. Chen HW, Tu CH, J. Chem. Eng. Data, 51(1), 261, 2006
  15. Estrada-Baltazar A, Iglesias-Silva GA, Caballero-Ceron C, J. Chem. Eng. Data, 58(12), 3351, 2013
  16. Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426, 2004
  17. Rhim JN, Park SS, Korean Chem. Eng. Res., 13, 147, 1975
  18. Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444, 2006
  19. Riddick A, Bunger W, Sakano T, Physical Properties and Methods of Purification, Organic Solvents, vol. II. 1986, Wiley, New York.
  20. Jimenez E, Casas H, Segade L, Franjo C, J. Chem. Eng. Data, 45, 862, 2000
  21. Ortega J, J. Chem. Eng. Data, 27, 312, 1982
  22. Dash S, Pradhan S, Dalai B, Moharana L, Swain B, Physics and Chemistry of Liquids, 50, 735-749(2012).
  23. Aicart E, Tardajos G, Diaz Pena M, J. Chem. Eng. Data, 25, 140, 1980
  24. Aucejo A, Burguet MC, Munoz R, Marques JL, J. Chem. Eng. Data, 40(1), 141, 1995
  25. Aminabhavi TM, Patil VB, J. Chem. Eng. Data, 42(3), 641, 1997
  26. Shekaari H, Zafarani-Moattar MT, Behrooz NJ, J. Chem. Thermodyn., 86, 188, 2015
  27. Aminabhavi TM, Patil VB, Aralaguppi MI, Phayde HT, J. Chem. Eng. Data, 41(3), 521, 1996
  28. Alonso E, Guerrero H, Montano D, Lafuente C, Artigas H, Thermochim. Acta, 52, 71, 2011
  29. Kouris S, Panayiotou C, J. Chem. Eng. Data, 34, 200, 1989
  30. Dubey GP, Sharma M, J. Mol. Liq., 142, 124, 2008
  31. Orge B, Rodriguez A, Canosa JM, Marino G, Iglesias M, Tojo J, J. Chem. Eng. Data, 44, 1041, 1999
  32. Dubey GP, Sharma M, J. Chem. Thermodyn., 40(6), 991, 2008
  33. Gayol A, Iglesias M, Goenaga JM, Concha RG, Resa JM, J. Mol. Liq., 135, 105, 2007
  34. Landaverde-Cortes DC, Iglesias-Silva GA, Ramos-Estrada M, Hall KR, J. Chem. Eng. Data, 53(1), 288, 2008
  35. Aminabhavi TM, Gopalkrishna B, J. Chem. Eng. Data, 39(3), 529, 1994
  36. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  37. Orge B, Iglesias M, Rodriguez A, Canosa JM, Tojo J, Fluid Phase Equilib., 133(1-2), 213, 1997
  38. Gonzalez B, Calvar N, Dominguez A, Tojo J, J. Chem. Thermodyn., 39(2), 322, 2007
  39. Kashyap P, Rani M, Gahlyan S, Tiwari DP, Maken S, J. Mol. Liq., 268, 303, 2018
  40. Jeschke P, Schneider GM, J. Chem. Thermodyn., 10, 803, 1978
  41. Patterson D, Delmas G, Discussions of the Faraday Society, 49, 98 (1970).
  42. Flory PJ, J. American Chemical Society, 87, 1833, 1965
  43. Abe A, Flory P, J. American Chemical Society, 87, 1838, 1965
  44. George J, Sastry NV, Int. J. Thermophys., 24, 1697, 2003
  45. Vercher E, Orchilles AV, Miguel PJ, Martinez-Andreu A, J. Chem. Eng. Data, 52(4), 1468, 2007
  46. Pineiro A, Amigo A, Bravo R, Brocos P, Fluid Phase Equilib., 173(2), 211, 2000
  47. Garcia-Miaja G, Troncoso J, Romani L, Fluid Phase Equilib., 274(1-2), 59, 2008
  48. Calvo E, Brocos P, Bravo R, Pintos M, Amigo A, Roux AH, Roux-Desgranges G, J. Chem. Eng. Data, 43(1), 105, 1998
  49. Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636, 2013
  50. Treszczanowicz AJ, Benson GC, Fluid Phase Equilib., 23, 117, 1985
  51. Singh KC, Kalra KC, Maken S, Gupta V, Fluid Phase Equilib., 119(1-2), 175, 1996
  52. Letcher TM, Domanska U, Mwenesongole E, Fluid Phase Equilib., 149(1-2), 323, 1998