Issue
Korean Chemical Engineering Research,
Vol.58, No.2, 230-234, 2020
딥러닝 예측 기반의 OLED 재료 분자구조 가상 스크리닝
Deep-learning Prediction Based Molecular Structure Virtual Screening
딥러닝 기법을 활용하여 분자 구조로부터 물성을 예측하는 시스템은 화학, 생물학, 재료 연구에 적용하기 위해 개발 되었다. 분자 구조와 물성 정보가 축적된 데이터베이스를 기반으로, 구조와 물성간의 관계식을 찾는 딥러닝 모형을 구축한 후 최종적으로는 새로운 분자 구조에 대한 물성 예측값을 제공할 수 있다. 또한 선정된 분자 구조의 실제 물성값에 대한 실험을 병행하여 지속적인 검증 및 모형 업데이트를 수행하게 된다. 이를 통해 다량의 분자구조로부터 물성이 우수한 분자 구조를 빠른 시간 안에 스크리닝할 수 있으며, 연구의 효율성 및 성공률을 높일 수 있다. 본 논문에서는 딥러닝을 활용한 물성 예측 시스템의 전반적인 구성과 LG화학에서 실제 신규 구조 발굴에 적용된 사례를 중심으로 소개하고자 한다.
A system that uses deep-learning techniques to predict properties from molecular structures has been developed to apply to chemical, biological and material studies. Based on the database where molecular structure and property information are accumulated, a deep-learning model looking for the relationship between the structure and the property can eventually provide a property prediction for the new molecular structure. In addition, experiments on the actual properties of the selected molecular structure will be carried out in parallel to carry out continuous verification and model updates. This allows for the screening of high-quality molecular structures from large quantities of molecular structures within a short period of time, and increases the efficiency and success rate of research. In this paper, we would like to introduce the overall composition of the materiality prediction system using deep-learning and the cases applied in the actual excavation of new structures in LG Chem.
[References]
  1. Youn Y, Han S, “Paradigm Shift in Material Research: from Edisonian to Mechanistic to Data-driven,” Physics & High Technology, Sep(2017).
  2. Agrawal A, Choudhary A, APL Materials, 5, 053208, 2016
  3. Takahashi K, Tanaka Y, Dalton Transactions, 45(26), 10497, 2016
  4. Citrine informatics, “Material informatics: Artificial intelligence driven materials development and optimization” (2016).
  5. Gomez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Markopoulos G, Nature Materials, 15(10), 1120, 2016
  6. Kwak HS, Giesen DJ, Hughes TF, Goldberg A, Cao Y, Gavartin J, Halls MD, Organic Light Emitting Materials and Devices XX, 9941, 994119(2016).
  7. Goh GB, Hodas NO, Siegel C, Vishnu A, arXiv preprint arXiv:1712.02034 (2017).
  8. Altae-Tran H, Ramsundar B, Pappu AS, Pande V, ACS Central Science, 3(4), 283, 2017
  9. Leo A, Hoekman DH, “Exploring QSAR,” American Chemical Society(1995).
  10. Weininger D, Journal of Chemical Information and Computer Sciences, 28(1), 31-36(1988).
  11. Landrum G, “Rdkit”, Open-source cheminformatics (2006).
  12. Moriwaki H, Tian YS, Kawashita N, Takagi T, J. Chem-informatics, 10(1), 4, 2018