Issue
Korean Chemical Engineering Research,
Vol.58, No.1, 98-105, 2020
Experimental Measurement and Correlation of two α-Amino Acids Solubility in Aqueous Salts Solutions from 298.15 to 323.15 K
By the gravimetric method at atmospheric pressure, the solubility of two α-amino acids was resolved over temperatures from (293.15 to 323.15) K. The α-amino acids studied were L-arginine and L-histidine. Results showed a salting-out effect on the solubility of the tested amino compounds. It is obvious that there was an increase in the solubility, in aqueous chloride solutions, with the increasing temperature. Results were translated regarding the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data was precisely associated with a semiempirical equation. The standard molar Gibbs free energies of transfer of selected α-amino compounds (ΔtrG°) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive (ΔtrG°) value which is most part of the enthalpic origin.
[References]
  1. Bhattacharyya A, Bhattacharya SK, J. Solut. Chem., 42, 2149, 2013
  2. Scott E, Peter F, Sanders J, Appl. Microbiol. Biotechnol., 75(4), 751, 2007
  3. Lammens TM, Franssen MCR, Scott EL, Sanders JPM, Biomass Bioenerg., 44, 168, 2012
  4. Mahali K, Roy S, Dolui BK, J. Solution Chem., 42(5), 1096, 2013
  5. Roy S, Hossain A, Dolui BK, J. Chem. Eng. Data, 61(1), 132, 2016
  6. Thombre SM, Sarwade BD, J. Macromol. Sci. A, 42(9), 1299, 2005
  7. Mandal U, Bhattacharya S, Das K, Kundu KK, Z. Phys. Chem., 159(1), 21, 1988
  8. Held C, Cameretti LF, Sadowski G, Ind. Eng. Chem. Res., 50(1), 131, 2011
  9. Lu J, Wang XJ, Yang X, Ching CB, J. Chem. Eng. Data, 51(5), 1593, 2006
  10. Pradhan AA, Vera JH, Fluid Phase Equilib., 152(1), 121, 1998
  11. Romero CM, Oviedo DC, J. Solution Chem., 42(6), 1355, 2013
  12. Koseoglu F, Kilic E, Dogan A, Anal. Biochem., 277(2), 243, 2000
  13. Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 36(6), 2445, 1997
  14. Pradhan AA, Vera JH, J. Chem. Eng. Data, 45(1), 140, 2000
  15. Roy S, Guin PS, Mahali K, Dolui BK, J. Mol. Liq., 218, 316, 2016
  16. Anfinsen CB, Seheraga HA, Adv. Protein Chem., 29, 205, 1975
  17. El-Dossoki FI, J. Solution Chem., 39(9), 1311, 2010
  18. Roy S, Mahali K, Akhter S, Dolui BK, Asian J. Chem., 25(12), 6661, 2013
  19. Reading JF, Watson ID, Hedwig GR, J. Chem.Thermodyn., 22(2), 159, 1990
  20. Abualreish MJ, Noubigh A, Can. J. Chem (2019).
  21. Noubigh A, Akremi A, J. Mol. Liq., 274, 752, 2019
  22. Noubigh A, Abderrabba M, Provost E, J. Iran. Chem. Soc., 6(1), 168, 2009
  23. Noubigh A, Abderrabba M, J. Mol. Liq., 223, 261, 2016
  24. Noubigh A, Akrmi A, J. Mol. Liq., 220, 277, 2016
  25. Bowden NA, Sanders JPM, Bruins ME, J. Chem. Eng. Data, 63(3), 488, 2018
  26. Hayashi K, Matsuda T, Takeyama T, Hino T, Biosci. Biotechnol. Biochem., 30(4), 378, 1966
  27. Liu Y, Wang Y, Liu YM, Xu SJ, Chen MY, Du SC, Gong JB, J. Chem. Thermodyn., 105, 1, 2017
  28. Noubigh A, Mgaidi A, Abderrabba M, Provost E, Furst W, J. Sci. Food Agr., 87(5), 738, 2007
  29. Eisen EO, Joffe J, J. Chem. Eng. Data, 11(4), 480, 1966
  30. Gomis V, Ruiz F, Devera G, Lopez E, Saquete MD, Fluid Phase Equilib., 98, 141, 1994
  31. Mullin JW, Crystallization. 3rd ed., Butterworth-Heinemann, Oxford, 2000.
  32. Jing DD, Wang JK, Wang YL, J. Chem. Eng. Data, 55(1), 508, 2010
  33. Mendonca AFSS, Formigo DTR, Lampreia IMS, J. Solution Chem., 31(8), 653, 2002
  34. Hossain A, Roy S, J. Mol. Liq., 249, 1133, 2018
  35. Imran S, Hossain A, Mahali K, Roy AS, Guin PS, Roy S, J. Mol. Liq., 265, 693, 2018
  36. Das P, Chatterjee S, Basumallick I, J. Chin. Chem. Soc., 51(1), 1, 2004
  37. Bretti C, Cigala RM, Giuffre O, Lando G, Sammartano S, Fluid Phase Equilib., 459, 51, 2018
  38. Carta R, Tola G, J. Chem. Eng. Data, 41(3), 414, 1996
  39. Noubigh A, Abderrabba M, Provost E, J. Chem. Thermodyn., 39(2), 297, 2007