Issue
Korean Chemical Engineering Research,
Vol.57, No.6, 868-873, 2019
다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가
The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple
본 연구에서는 유기물인 메틸 바이올로겐(methyl viologen, MV)과 템폴(4-hydroxy-TEMPO, TEMPOL)을 활물질로 사용하고 NaCl의 중성 전해질 기반 수계 유기 레독스 흐름전지 성능이 멤브레인에 따라 어떻게 영향을 받는지 분석하였다. 메틸 바이올로겐(MV)과 템폴(TEMPOL)은 중성 전해질인 염화나트륨(NaCl) 전해질에 대해 높은 셀전압(1.37 V)을 얻을 수 있다. 성능 비교를 위해 사용한 멤브레인은 두 가지이다. 첫째로, 상용 양이온 교환막 중 하나인 Nafion 117를 사용하였을 때 성능은 첫번째 사이클에서 충전만 일어났을 뿐 그 후 높은 저항 때문에 완전지가 작동하지 않았다. 하지만 두번째로 사용한 Fumasep 음이온 교환막(FAA-3-50)은 Nafion 117 멤브레인을 사용했을 때와는 다르게 비교적 안정적인 충방전 사이클링을 보였다. 전류 밀도 40 mA·cm-2, 컷-오프 전압 0.55~1.7 V에서 전류 효율(charge efficiency)은 97%, 전압 효율(voltage efficiency)은 78%로 높게 나타났다. 방전 용량(discharge capacity)은 10사이클에서 1.44 Ah·L-1로 이론 용량(2.68 Ah·L-1)의 54%를 나타내었다. 방전 용량의 용량 손실율(capacity loss rate)은 0.0015 Ah·L-1/cycle 로 나타났다. 순환주사전류 실험을 통해 Nafion 117 멤브레인과 Fumasep 음이온 교환막 사이의 이러한 성능차이는 활물질의 크로스 오버(cross over) 현상으로 인한 방전 용량 손실이 아닌 멤브레인과 활물질의 화학적 반응으로 인한 저항 증가가 원인임을 파악할 수 있었다.
In this study, the evaluation of performance of AORFB using methyl viologen and TEMPOL as organic active materials in neutral supporting electrolyte (NaCl) with various membrane types was performed. Using methyl viologen and TEMPOL as active materials in neutral electrolyte solution, the cell voltage is 1.37V which is relatively high value for AORFB. Two types of membranes were examined for performance comparison. First, when using Nafion 117 membrane which is commercial cation exchange membrane, only the charge process occurred in the first cycle and the single cell couldn’t work because of its high resistance. However, when using Fumasep anion exchange membrane (FAA-3-50) instead of Nafion 117 membrane, the result was obtained as the totally different charge-discharge graphs. When current density was 40mA·cm-2 and cut off voltage range was from 0.55 V to 1.7 V, the charge efficiency (CE) was 97% and voltage efficiency (VE) was 78%. In addition, the discharge capacity was 1.44 Ah·L-1 which was 54% of theoretical capacity (2.68 Ah·L-1) at 10th cycle and the capacity loss rate was 0.0015 Ah·L-1 per cycle during 50 cycles. Through cyclic voltammetry test, it seems that this difference in the performance between the full cell using Nafion 117 membrane and Fumasep anion exchange membrane came from increasing resistance due to chemical reaction between membrane and active material, not the capacity loss due to cross-over of active material through membrane.
[References]
  1. Ibrahim H, Ilinca A, Perron J, Renew. Sust. Energ. Rev., 12, 1221, 2008
  2. Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500, 2019
  3. Christwardana M, Chung YJ, Kim DH, Kwon YC, J. Ind. Eng. Chem., 71, 435, 2019
  4. Christwardana M, Frattini D, Duarte KDZ, Accardo G, Kwon Y, Appl. Energy, 238, 239, 2019
  5. Christwardana M, Chung YJ, Tannia DC, Kwon YC, Korean J. Chem. Eng., 35(12), 2421, 2018
  6. Chung Y, Jeong J, Pham HTT, Lee J, Kwon Y, J. Electrochem. Soc., 165(11), A2703, 2018
  7. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388, 2018
  8. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  9. Yue L, Li W, Sun F, Zhao L, Xing L, Carbon, 48, 3079, 2010
  10. Alotto P, Guarnieri M, Moro F, Renew. Sust. Energ. Rev., 29, 325, 2014
  11. Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 166(2), 531, 2007
  12. Bartolozzi M, J. Power Sources, 27, 219, 1989
  13. Moon S, Kwon BW, Chung Y, Kwon Y, J. Electrochem. Soc., 166(12), A2602, 2019
  14. Jung M, Lee W, Noh C, Konovalova A, Yi GS, Kim S, Kwon Y, Henkensmeier D, J. Membr. Sci., 580, 110, 2019
  15. Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26, 2018
  16. Chung Y, Jeong J, Pham HTT, Lee J, Kwon Y, J. Electrochem. Soc., 165(11), A2703, 2018
  17. Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438, 2019
  18. Lee WM, Kwon YJ, Korean Chem. Eng. Res., 56(6), 890, 2018
  19. Lee WM, Chung KY, Kwon YC, Korean Chem. Eng. Res., 57(2), 239, 2019
  20. Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882, 2018
  21. Chen Q, Gerhardt MR, Hartle L, Aziz MJ, J. Electrochem. Soc., 163(1), A5010, 2016
  22. Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1, 16102, 2016
  23. Janoschka T, Martin N, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 55, 14427, 2016
  24. DeBruler C, Hu B, Moss J, Luo J, Liu TL, ACS Energy Lett., 3, 663, 2018
  25. Hu B, DeBruler C, Rhodes Z, Liu TL, J. Am. Chem. Soc., 139(3), 1207, 2017
  26. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH, J. Appl. Electrochem., 41(10), 1137, 2011
  27. Orita A, Verde MG, Sakai M, Meng YS, J. Power Sources, 321, 126, 2016
  28. Wang WH, Wang XD, Electrochim. Acta, 52(24), 6755, 2007