Issue
Korean Chemical Engineering Research,
Vol.57, No.4, 531-538, 2019
Dead ended 모드에서 수소 재순환이 고분자전해질연료전지의 성능에 미치는 영향
Effect of Hydrogen Recirculation on the Performance of Polymer Electrolyte Membrane Fuel Cell with Dead Ended Mode
고분자전해질 연료전지(PEMFC)의 성능이 개선됨에 따라 생성물인 물과 열의 발생이 증가하고 이를 처리하기 위한 관리기법이 중요해지고 있다. 본 연구에서는 물 관리 기법으로 수소 재순환을 적용하였고, 수소 재순환 유량(flow rate) 과 퍼지 간격(purge interval) 및 지속 시간(duration)이 연료전지의 성능에 미치는 영향에 대한 실험을 수행하였다. Purge 조건의 영향을 해석하기 위하여 수소극의 압력, 연료의 습도, 운전 간의 연료 이용 효율과 물 배출 양을 측정하였다. 수소 재순환 유량이 증가할수록 수소극 출구의 압력 저하로 인하여 스택 성능이 낮아졌다. Purge 조건에 따라서 물을 효과적으로 배출하지 못해 순간적인 전압 강하가 발생하거나 혹은 잦은 purge로 인해 수소극의 습도를 유지하지 못하여 성능이 점차적으로 감소하는 것을 확인하였다. Purge 조건 실험을 통하여 수소극의 습도를 유지하고 응축된 물을 충분히 배출할 수 있는 purge interval과 duration을 선정하였고, 이를 통하여 스택의 성능과 연료 이용 효율을 향상시킬 수 있었다.
As the performance of PEMFC has been improved, the water and heat generated by reaction have increased so, the water and heat management of PEMFC is becoming more important. In this study, hydrogen recirculation was applied as the water management technique and the effect of recirculation flow rate, purge interval and duration on the performance of PEMFC was investigated. Anode pressure, fuel humidity and utilization, water discharge amount was measured to check the effect of purge conditions on performance. As the recirculation flow rate has increased, the performance of PEMFC became lower due to decrease of anode outlet pressure. According to the purge conditions, instantaneous voltage drop has occurred because of accumulated water. In frequent purge conditions, the performance of PEMFC gradually decreased due to fuel humidity control failure. Stable performance and high fuel utilization was achieved on this work by analyzing the effect of purge conditions.
[References]
  1. Lewis J, Int. J. Hydrog. Energy, 39(36), 21896, 2014
  2. Wilberforce Tabbi, Alaswad A., Palumbo A., Dassisti M., Olabi A. G., Int. J. Hydrog. Energy, 41(37), 16509, 2016
  3. Wee JH, Renew. Sust. Energ. Rev., 11, 1720, 2007
  4. Kordesch K, Simader G, “Fuel Cells and their Applications,” New York: VCH. Wiley(1996).
  5. Carrette L, Friedrich KA, Stimming U, Fuel Cells, 1, 5, 2001
  6. Kitahara T, Konomi T, Nakajima H, J. Power Sources, 195(8), 2202, 2010
  7. Xiong L, Manthiram A, Electrochim. Acta, 50(16-17), 3200, 2005
  8. Qi ZG, Kaufman A, J. Power Sources, 109(1), 38, 2002
  9. Ticianelli EA, Derouin CR, Redondo A, Srinivasan S, J. Electrochem. Soc., 135, 2209, 1988
  10. Kumar GS, Raja M, Parthasarathy S, Electrochim. Acta, 40(3), 285, 1995
  11. Matsuura T, Chen JX, Siegel JB, Stefanopoulou AG, Int. J. Hydrog. Energy, 38(26), 11346, 2013
  12. Yu JL, Jiang ZW, Hou M, Liang D, Xiao Y, Dou ML, Shao ZG, Yi BL, J. Power Sources, 246, 90, 2014
  13. Choi JW, Hwang YS, Cha SW, Kim MS, Int. J. Hydrog. Energy, 35(22), 12469, 2010
  14. Chen JX, Siegel JB, Stefanopoulou AG, Waldecker JR, Int. J. Hydrog. Energy, 38(12), 5092, 2013
  15. Belvedere B, Bianchi M, Borghetti A, De Pascale A, Paolone M, Vecci R, Int. J. Hydrog. Energy, 38(1), 385, 2013
  16. Gomez A, Raj A, Sasmito AP, Shamim T, Appl. Energy, 130, 692, 2014
  17. Lin YF, Chen YS, J. Power Sources, 340, 176, 2017
  18. Yang YP, Zhang X, Guo LJ, Liu HT, Int. J. Hydrog. Energy, 42(7), 4690, 2017
  19. Ichikawa Y, Oshima N, Tabuchi Y, Ikezoe K, J. Power Sources, 272, 743, 2014
  20. Yang Y, Zhang X, Guo L, Liu H, Int. J. Hydrog. Energy, 23, 24435, 2017
  21. Yang Y, Zhang X, Guo L, Liu H, Int. J. Hydrog. Energy, 23, 28578, 2017
  22. Promislow K, St-Pierre J, Wetton B, J. Power Sources, 196(23), 10050, 2011
  23. Rabbani A, Rokni M, Appl. Energy, 111, 1061, 2013
  24. Chen YS, Yang CW, Lee JY, Appl. Energy, 113, 1519, 2014
  25. Perez1 LC, Ihonen J, Sousa JM, Mendes A, Fuel Cells, 13, 203, 2013
  26. Nikiforow K, Karimaki H, Keranen TM, Ihonen J, J. Power Sources, 238, 336, 2013
  27. Koski1 P, Perez1 LC, Ihonen J, Fuel Cells, 15, 494, 2015