Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 274-282, 2019
NASNet을 이용한 이미지 시맨틱 분할 성능 개선
Improved Performance of Image Semantic Segmentation using NASNet
최근 빅데이터 과학은 사회현상 모델링을 통한 예측은 물론 강화학습과 결합하여 산업분야 자동제어까지 응용범위가 확대되고 있다. 이러한 추세 가운데 이미지 영상 데이터 활용연구는 화학, 제조, 농업, 바이오산업 등 다양한 산업분야에서 활발히 진행되고 있다. 본 논문은 신경망 기술을 활용하여 영상 데이터의 시맨틱 분할 성능을 개선하고자, U-Net의 계산효율성을 개선한 DeepU-Net 신경망에 AutoML 강화학습 알고리즘을 구현한 NASNet을 결합하였다. BRATS2015 MRI 데이터을 활용해 성능 검증을 수행하였다. 학습을 수행한 결과 DeepU-Net은 U-Net 신경망 구조보다 계산속도 향상 뿐 아니라 예측 정확도도 동등 이상의 성능이 있음을 확인하였다. 또한 이미지 시맨틱 분할 성능을 개선하기 위해서는 일반적으로 적용하는 드롭아웃 층을 빼고, DeepU-Net에 강화학습을 통해 구한 커널과 필터 수를 신경망의 하이퍼 파라미터로 선정했을 때 DeepU-Net보다 학습정확도는 0.5%, 검증정확도는 0.3% 시맨틱 분할 성능을 개선할 수 있었다. 향후 본 논문에서 시도한 자동화된 신경망을 활용해 MRI 뇌 영상진단은 물론, 열화상 카메라를 통한 이상진단, 비파괴 검사 진단, 화학물질 누출감시, CCTV를 통한 산불감시 등 다양한 분야에 응용될 수 있을 것으로 판단된다.
In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.
[References]
  1. Ahn KU, Park CS, Yeo MS, J. Architectural Institute Korea, 38(1), 420, 2018
  2. Lee J, News & Information For Chemical Engineers, 36(4), 290-293(2018).
  3. Girshick R, Donahue J, Darrell T, Malik J, IEEE Conference on Computer Vision and Pattern Recognition(CVPR)(2014).
  4. Krizhevsky A, Sutskever I, Hinton GE, NIPS, 1106-1114(2012).
  5. Olaf Ronneberger, Philipp Fischer, and Thomas, arXiv:1505.04597v1 [cs.CV] 18 May(2015).
  6. https://lmb.informatik.uni-freiburg.de/people/ronneber/U-Net/.
  7. Li R, Liu W, Yang L, Sun S, Hu W, Zhang F, Senior Member, IEEE, Wei Li, Senior Member, IEEE, arXiv:1709.00201v1 [cs.CV] 1, Sep(2017).
  8. Zoph B, Vasudevan V, Shlens J, Le QV, arXiv:1707.07012v4 [cs.CV] 11, Apr(2018).
  9. https://www.smir.ch/BRATS/Start2015.
  10. https://github.com/titu1994/neural-architecture-search.
  11. Hessel M, Modayil J, van Hasselt H, Schaul T, et al., “Rainbow: Combining Improvements in Deep Reinforcement Learning”
  12. Noh H, Hong S, Han B, IEEE International Conference on Computer Vision, 1520-1528(2015).
  13. Lin H, Shi Z, Zou Z, Remote Sensing, 9(5), 480, 2017
  14. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z, Statistics(2015).
  15. DeVries T, Taylor GW, Improved regularization of convolutional neural networks with cutout: arXiv preprint arXiv:1708.04552(2017).
  16. Ba JL, Kiros JR, Hinton GE, Layer normalization. arXiv preprint arXiv:1607.06450(2016).
  17. Bergstra J, Bardenet R, Bengio Y, Kegl B, “Algorithms for Hyper-parameter Optimization. In Neural Information Processing Systems,” (2011).
  18. https://github.com/tensorflow/models/tree/master/official/resnet.
  19. Han IS, Shin HK, Korean Chem. Eng. Res., 53(2), 236, 2015
  20. www.image-net.org.