Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 267-273, 2019
계층적 다공구조를 갖는 Fe2O3 나노섬유의 리튬 이차전지 음극소재 적용
Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries
본 연구는 메조-, 마크로- 기공이 상호 연결된 계층적 다공구조를 갖는 Fe2O3 나노섬유를 전기방사 및 후 열처리 과정을 통해 합성하였다. 구조체 내 마크로 기공은 Fe(acac)3/polyacrylonitrile 연속상을 포함하는 섬유 내 분산상으로 존재하는 polystryrene을 열처리 과정 중 선택적으로 분해함으로써 생성시켰다. 또한, 전기방사 공정 동안 침투된 수분의 기화로 형성된 메조 기공은 마크로 기공과 상호연결되어 최종 계층적 다공구조를 갖는 Fe2O3 나노섬유를 형성했다. 계층적 다공구조를 갖는 Fe2O3 나노섬유의 초기 방전용량과 Coulombic 효율은 1.0 A g-1의 전류밀도에서 1190 mA h g-1, 79.2% 였으며, 1000 사이클 후의 방전 용량은 792 mA h g-1였다. 계층적 다공구조를 갖는 Fe2O3 나노섬유는 높은 구조적 안정성과 형태학적 이점으로 인해 우수한 리튬 이온 저장 성능을 나타냈다.
Hierarchically porous Fe2O3 nanofibers with meso- and macro- pores are designed and synthesized by electrospinning and subsequent heat-treatment. The macro pores are generated by selectively decomposition of polystyrene as a dispersed phase in the as-spun fibers containing Fe(acac)3/polyacrylonitrile continuous phases during heattreatment. Additionally, meso-pores formed by evaporation of infiltrated water vapor during electrospinning process interconnected the macro-pores and results in the formation of hierarchically porous Fe2O3 nanofibers. The initial discharge capacity and Coulombic efficiency of the hierarchically porous Fe2O3 nanofibers at a current density of 1.0 A g-1 are 1190 mA h g-1 and 79.2%. Additionally, the discharge capacity of the nanofibers is 792 mA h g-1 after 1,000 cycles. The high structural stability and morphological benefits of the hierarchically porous Fe2O3 nanofibers resulted in superior lithium ion storage performance.
[References]
  1. Alias N, Mohamad AA, J. Power Sources, 274, 237, 2015
  2. Zhao Y, Li XF, Yan B, Li DJ, Lawes S, Sun XL, J. Power Sources, 274, 869, 2015
  3. Zhao Y, Wang LP, Sougrati MT, Feng Z, Leconte Y, Fisher A, Srinivasan M, Xu Z, Adv. Eng. Mater., 7(9), 160142, 2017
  4. Du M, Xu CH, Sun J, Gao L, Electrochim. Acta, 80, 302, 2012
  5. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421, 2014
  6. Kim SO, Manthiram A, J. Mater. Chem. A, 3(5), 2399, 2015
  7. Cho JS, Hong YJ, Kang YC, ACS Nano, 9(4), 4026, 2015
  8. Zou Y, Kan J, Wang Y, J. Phys. Chem. C, 115(42), 20747, 2011
  9. Sun M, Sun M, Yang H, Song W, Nie Y, Sun S, Ceram. Int., 43(1), 363, 2017
  10. Xu X, Cao R, Jeong S, Cho J, Nano Lett., 12(9), 4988, 2012
  11. Son MY, Hong YJ, Lee JK, Kang YC, Nanoscale, 5(23), 11592, 2013
  12. Cho JS, Lee JK, Kang YC, Sci. Rep., 6, 23699, 2016
  13. Xie JL, Guo CX, Li CM, Energy Environ. Sci., 7(8), 2559, 2014
  14. Cho JS, Park JS, Jeon KM, Kang YC, J. Mater. Chem. A, 5(21), 10632, 2017
  15. Wang ZY, Zhou L, Lou XW, Adv. Mater., 24(14), 1903, 2012
  16. Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S, Nano Energy, 39, 111, 2017
  17. Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad A, Greiner R, RSC Adv, 7(46), 28951, 2017
  18. Lu P, Xia YN, Langmuir, 29(23), 7070, 2013
  19. Furushima Y, Nakada M, Takahashi H, Ishikiriyama K, Polymer, 55(13), 3075, 2014
  20. Pal B, Sharon M, Thin Solid Films, 379(1-2), 83, 2000
  21. Cho JS, Kang YC, ACS Appl. Mater. Interfaces, 8(6), 3800, 2016
  22. Jo E, Yeo JG, Kim DK, Oh JS, Hong CK, Polym. Int., 63(8), 1471, 2014
  23. Liu J, Li Y, Fan H, Zhu Z, Jiang J, Ding R, Hu Y, Huang X, Chem. Mater., 22(1), 212, 2009
  24. Zhao Y, Li J, Ding Y, Guan L, Chem. Commun., 47(26), 7416, 2011
  25. Cho JS, Park JS, Kang YC, Nano Res., 10(3), 897, 2017
  26. Su L, Zhong Y, Zhou Z, J. Mater. Chem. A, 1(47), 15158, 2013
  27. Cho JS, Hong YJ, Lee JH, Kang YC, Nanoscale, 7(18), 8361, 2015
  28. Wang B, Chen JS, Wu HB, Wang ZY, Lou XW, J. Am. Chem. Soc., 133(43), 17146, 2011
  29. Zhou J, Song H, Chen X, Zhi L, Yang S, Huo J, Yang W, Chem. Mater., 21(13), 2935, 2009
  30. Zhu J, Yin Z, Yang D, Sun T, Yu H, Hoster HE, Hng HH, Zhang H, Yan Q, Energy Environ. Sci., 6(3), 987, 2013
  31. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW, J. Am. Chem. Soc., 134(42), 17388, 2012
  32. Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K, Ionics, 19(1), 25, 2013
  33. Du Z, Zhang S, Zhao J, Wu X, Lin R, J. Nanosci. Nanotechnol., 13(5), 3602, 2013
  34. Xiao H, Xia Y, Zhang W, Huang H, Gan Y, Tao X, J. Mater. Chem. A, 1(6), 2307, 2013
  35. Chen Y, Wang J, Jiang J, Zhou M, Zhu J, Han S, RSC Adv., 5(28), 21740, 2015
  36. Wu C, Zhuang QC, Tian LL, Wu YX, Ju ZC, Zhang H, Zhang XX, Chen HB, RSC Adv., 5(27), 21405, 2015
  37. Padashbarmchi Z, Hamidian AH, Zhang H, Zhou L, Khorasani N, Kazemzad M, Yu C, RSC Adv., 5(14), 10304, 2015
  38. Wu ZG, Zhong YJ, Li JT, Guo XD, Huang L, Zhong BH, Sun SG, J. Mater. Chem. A, 2(31), 12361, 2014