Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 253-258, 2019
연소 후 이산화탄소 포집용 흡수제의 비활성화 원인 규명
Deactivation causes of dry sorbents for post-combustion CO2 capture
연소 후 이산화탄소 포집용 고속 유동층 공정에서 사용되는 흡수제를 대량생산할 때, 흡수제 강도를 위해 여러 가지 물질을 사용한다. 본 연구에서는 흡수제 설계시 사용하는 물질 중 하나인 Micro-cell C (MCC)를 사용하여 K2CO3 기반 건식 흡수제(KMC)를 제조하였고, 흡수 및 재생 특성을 평가하였다. 흡수반응은 60 oC에서 실험하였고, 재생반응은 200 °C에서 실험하였다. KMC 흡수제의 연속실험 결과, 1 cycle임에도 불구하고 이론흡수능(95.4 mg CO2/g sorbent)의 약 22%인 21.6 mg CO2/g sorbent의 낮은 흡수능을 나타내었고, 5 cycle에서는 13.7 mg CO2/g sorbent의 낮은 흡수능을 나타내었다. XRD 및 TG 분석결과, MCC에 함유된 Ca계 성분으로 인해 제조 및 흡수 과정에서 부반응 물질인K2Ca(CO3)2 구조가 생성됨에 따라 흡수제가 비활성화된 것을 확인하였다. 또한 흡수제 비활성화 문제를 해결하기 위해, MCC를 850 °C에서 먼저 소성하는 과정을 추가하여 흡수제(KM8)를 제조하였다. KM8 흡수제는 1 cycle에서 95.2 mg CO2/g sorbent의 높은 흡수능을 나타낼 뿐만 아니라 5 cycle 동안 우수한 재생성을 나타내었다. 따라서 소성단계를 추가함으로써 부반응 원인물질 제거방법을 통해 흡수제의 비활성화를 해결할 수 있음을 확인하였다.
Several materials are used to design the sorbents applied in a fast-fluidized bed process for post-combustion CO2 capture. In this study, K2CO3-based dry sorbent (KMC) was prepared by using Micro-cell C (MCC), one of the materials used to design the sorbent, and then its CO2 sorption and regeneration properties were evaluated. KMC sorbent showed a low CO2 capture capacity of 21.6 mg CO2/g sorbent, which is about 22% of the theoretical value (95.4 mg CO2/g sorbent) even at 1 cycle, and showed a low CO2 capture capacity of 13.7 mg CO2/g sorbent at 5 cycles. It was confirmed that the KMC sorbent was deactivated due to the formation of a K2Ca (CO3)2 phase, resulting from the reaction of the K2CO3 with the Ca component contained in the MCC. In order to solve the deactivation of sorbent, and KM8 sorbent was prepared by adding the process of calcining the MCC at 850 °C. The KM8 sorbent showed a high CO2 capture capacity of 95.2 mg CO2/g sorbent and excellent regeneration property. Thus, it was confirmed that the deactivation of the sorbent could be solved by adding the calcining step to remove the side reaction causing material.
[References]
  1. Davison J, Energy, 32(7), 1163, 2007
  2. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609, 2011
  3. Kim JK, Kim JM, Kim HS, Noh DS, Bae YS, Sim SJ, Lee KY, Lee YM, Lee CH, Jung KD, Huh DG, “Carbon Dioxide Capture, Storage and Conversion Technology,” Cheong Moon Gak(2008).
  4. Lee SC, Kim JC, Catal. Surv. Asia, 11, 171, 2007
  5. Min BM, KIC News, 12(1), 15, 2009
  6. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465, 2008
  7. Kim K, Yang S, Lee JB, Eom TH, Ryu CK, Lee HJ, Bae TS, Lee YB, Lee SJ, Korean J. Chem. Eng., 32(4), 677, 2015
  8. Yi CK, Carbon Sequestration Leadership Forum (2015).
  9. Lee SC, Chae HJ, Lee SJ, Park YH, Ryu CK, Yi CK, Kim JC, J. Mol. Catal. B-Enzym., 56, 179, 2009
  10. Lee SC, Kwon YM, Park YH, Lee WS, Park JJ, Ryu CK, Yi CK, Kim JC, Top. Catal., 53(7), 641, 2010
  11. Lee SC, Kwon YM, Jung SY, Lee JB, Ryu CK, Kim JC, Fuel, 115, 97, 2014
  12. Lee SC, Kwon YM, Chae HJ, Jung SY, Lee JB, Ryu CK, Yi CK, Kim JC, Fuel, 104, 882, 2013
  13. Lee SC, Cho MS, Jung SY, Ryu CK, Kim JC, Adsorption, 20, 331, 2014
  14. Zhao C, Chen X, Zhao C, Energy Fuels, 24, 1009, 2010
  15. Zhao CW, Chen XP, Zhao CS, Energy Fuels, 26(2), 1401, 2012
  16. Zhao CW, Chen XP, Zhao CS, Energy Fuels, 26(2), 1406, 2012
  17. Kim KS, Yang SR, Lee JB, Eom TH, Ryu CK, Jo SH, Park YC, Yi CG, Int. J. Greenh. Gas Control, 9, 347, 2012