Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 239-243, 2019
염화암모늄 전해질에 포함된 퀴논 레독스 활물질 조합을 이용한 수계 레독스 흐름 전지 성능 평가
Performance Evaluation of Aqueous Redox Flow Battery using Quinone Redox Couple Dissolved in Ammonium Chloride Electrolyte
본 연구에서는 Anthraquinone-2,7-disulfonic acid (2,7-AQDS)와 Tiron을 수계 레독스 흐름 전지 음극 및 양극 활물질로 사용하며 기존의 황산 전해질 대신 중성인 염화암모늄 (NH4Cl)을 전해질로 도입하였다. 이렇게 전해질을 변경함으로써, 황산 전해질의 낮은 셀 전압(0.76 V)을 1.01 V까지 향상시킬수 있다. 성능 최적화를 위해 염화암모늄 전해질에 0.1M로 활물질 농도를 맞춰 컷-오프 전압에 변화를 주며 완전지셀 성능을 평가하였다. 0.2~1.6 V 구간의 컷-오프 전압으로 40 mA/cm2하에서 20 사이클 동안 완전지셀을 테스트한 결과, 충전 동안 수소가 발생하였다. 이에 컷-오프 전압 조절로 충전 전압을 낮춰서 수소 발생을 제한하고자 0.2~1.2 V 구간으로 40 mA/cm2하에서 완전지셀 테스트를 진행하였다. 수소 발생은 없었으며, 전류 효율 99%, 방전 용량 3.3 Ah/L의 성능을 보였다.
In this study, anthraquinone-2,7-disulfonic acid (2,7-AQDS) is used as negative active material and Tiron is used as positive active material for aqueous redox flow battery (RFB). In previous results that used the 2,7-AQDS and Tiron, sulfuric acid (H2SO4) was a supporting electrolyte. However, in this study, ammonium chloride (NH4Cl) is suggested as the electrolyte for the first time. By changing the supporting electrolyte from H2SO4 to NH4Cl, the cell voltage of RFB is improved from 0.76 V to 1.01 V. To investigate the effect of NH4Cl supporting electrolyte of the performance of RFB, the full-cell tests of RFB using 2,7-AQDS and Tiron that are dissolved in NH4Cl supporting electrolyte are carried out, while cut-off voltage range is a main parameter to determine their performance. When the cut-off voltage range is 0.2~1.6 V, the hydrogen evolution occurs during charging step. To address the side reaction effect, the cut-off voltage range is changed to 0.2~1.2 V. When the revised cut-off voltage range is used and the current density of 40 mA/cm2 is applied, hydrogen evolution is not observed and the optimal RFB shows the charge efficiency of 99% and discharge capacity of 3.3 Ah/L at 10cycle.
[References]
  1. Kim RY, Lai JS, York B, Koran A, IEEE Trans. Industr. Electron., 56, 3709, 2009
  2. Soloveichik GL, Annu. Rev. Chem. Biomol. Eng., 2, 503, 2011
  3. Zhao HR, Wu QW, Hu SJ, Xu HH, Rasmussen CN, Appl. Energy, 137, 545, 2015
  4. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009, 2017
  5. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P, Chem. Soc. Rev., 44, 1777, 2015
  6. Diaz-Gonzalez F, Sumper A, Gomis-Bellmunt O, Villafafila-Robles R, Renew. Sust. Energ. Rev., 16, 2154, 2012
  7. Mohammadi T, Skyllaskazacos M, J. Membr. Sci., 98(1-2), 77, 1995
  8. Zhang H, Zhang H, Li X, Mai Z, Wei W, Energy Environ. Sci., 5, 6299, 2012
  9. Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H, Int. J. Energy Res., 34(2), 182, 2010
  10. Alotto P, Guarnieri M, Moro F, Renew. Sust. Energ. Rev., 29, 325, 2014
  11. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M, Electrochim. Acta, 101, 27, 2013
  12. Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191, 1991
  13. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301, 2018
  14. Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799, 2017
  15. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334, 2017
  16. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388, 2018
  17. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  18. Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371, 2014
  19. Permatasari A, Lee W, Kwon Y, “Performance Improvement of Aqueous Organic Redox Flow Battery using Tiron and Anthraquinone-2,7-Disulfonic Acid Redox Couple, ” Submitted.
  20. Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438, 2019
  21. Yoon CS, Ko JM, Latifatu M, Lee HS, Lee YG, Kim KM, Won JH, Jo J, Jang Y, Kim JH, Korean J. Chem. Eng., 52, 553, 2014
  22. Lee LG, Park SJ, Kim S, Korean J. Chem. Eng., 49, 758, 2011