Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 232-238, 2019
키틴 기반 흡착제 PEI-chitin을 이용한 반응성염료의 제거
Removal of Reactive Dyes using Chitin-based Adsorbent PEI-chitin
산업폐수 속의 대표적인 색도유발물질인 염료를 효과적으로 제거하기 위한 생체흡착제로 폴리에틸렌이민을 키틴에 가교결합한 PEI-chitin을 개발하였다. 대표적인 반응성염료인 Reactive Orange 16 (RO16)을 모델염료로 사용하였고, RO16에 대한 PEI-chitin의 흡/탈착 능력을 평가하기 위해 pH의 영향, 등온흡착, 흡착속도론, 탈착 실험을 수행하였다. 그 결과, Langmuir 식에 의해 산출된 최대흡착량은 pH 2에서 266.3 mg/g이었고, 흡착평형에 도달하는 시간은 50 mg/L에서는 약 20분, 100 mg/L에서는 약 60분 그리고 200 mg/L에서는 약 240분으로 평가되었다. 탈착실험은 암모니아/에탄올 혼합용액, NaOH, NaHCO3, Na2CO3를 용리액으로 이용하여 평가하였으며, 암모니아/에탄올 혼합용액에서 75.24%로 가장 높은 탈착율을 보였다.
Polyethylenimine-crosslinked chitin (PEI-chitin) was developed as a biosorbent to effectively remove dyestuffs from dye-containing wastewater. A representative reactive dye, Reactive Orange 16 (RO16) was used as a model dye. The effect of pH, isotherm, kinetic and desorption experiments were performed to evaluate the adsorption/desorption ability of PEI-chitin for RO16. As a result, the maximum adsorption capacity calculated by the Langmuir model was 266.3 mg/g at pH 2, and the time needed for adsorption equilibrium was evaluated to be about 20, 60, and 240 min for 50, 100, and 200 mg/L, respectively. The desorption experiments were carried out using various eluents such as ammonia/ethanol mixture, NaOH, NaHCO3, and Na2CO3, and the highest desorption rate was 75.24% in the ammonia/ ethanol mixture.
[References]
  1. Gholivand MB, Yamini Y, Dayeni M, Seidi S, Environ. Prog. Sustain. Energy, 34, 1683, 2015
  2. Hema M, Arivoli S, Int. J. Phys. Sci., 2, 10, 2007
  3. Marungrueng K, Pavasant P, J. Environ. Manage., 78, 268, 2006
  4. Novotny C, Dias N, Kapanen A, Malachova K, Vandrovcova M, Itavaara M, Chemosphere, 63(9), 1436, 2006
  5. Punzi M, Nilsson F, Anbalagan A, Svensson BM, Jonsson M, Mattiasson B, Jonstrup M, J. Hazard. Mater., 292, 52, 2015
  6. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S, J. Biotechnol., 101, 49, 2003
  7. Aksu Z, Process Biochemistry, 40, 997, 2005
  8. Sadeghi-Kiakhani M, Arami M, Gharanjig K, J. Appl. Polym. Sci., 127(4), 2607, 2013
  9. Dotto GL, Santos JMN, Rodrigues IL, Rosa R, Pavan FA, Lima EC, J. Colloid Interface Sci., 446, 133, 2015
  10. Prashanth HKV, Tharanathan RN, Trends Food Sci. Technol., 18, 117, 2007
  11. Won SW, Kwak IS, Yun YS, Bioresour. Technol., 160, 93, 2014
  12. Tizaoui C, Grima N, Chem. Eng. J., 173(2), 463, 2011
  13. Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interf., 209, 172, 2014
  14. Wong YC, Szeto YS, Cheung WH, McKay G, Langmuir, 19(19), 7888, 2003
  15. Sun XF, Wang SG, Cheng W, Fan MH, Tian BH, Gao' BY, Li XM, J. Hazard. Mater., 189(1-2), 27, 2011
  16. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337, 2008
  17. Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40, 3, 2000
  18. Kim MH, Hwang CH, Bin Kang S, Kim S, Park SW, Yun YS, Won SW, Chem. Eng. J., 280, 18, 2015
  19. Amini M, Younesi H, Bahramifar N, Chemosphere, 75, 1483, 2009
  20. Marrakchi F, Khanday WA, Asif M, Hameed BH, Int. J. Biol. Macromol., 93, 1231, 2016
  21. Won SW, Choi SB, Yun YS, Biochem. Eng. J., 28, 208, 2006
  22. Calvete T, Lima EC, Cardoso NF, Vaghetti JCP, Dias SLP, Pavan FA, J. Environ. Manage., 91, 1695, 2010
  23. Janaki V, Vijayaraghavan K, Ramasamy AK, Lee KJ, Oh BT, J. Hazard. Mater., 241-242, 110, 2012
  24. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 164(2-3), 473, 2009
  25. Ho YS, Mckay C, Water Res., 34, 735, 2000
  26. Lu PJ, Lin HC, Yu WT, Chern HM, J. Taiwan Inst. Chem. Eng., 42, 305, 2011
  27. Chern JM, Wu CY, Water Res., 35, 4159, 2001