Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 225-231, 2019
지상 고압 천연가스 배관의 최소 이격거리 기준에 관한 연구
Study on Minimum Separation Distance for Aboveground High-pressure Natural Gas Pipelines
우리나라의 경우 지상에 설치된 고압 천연가스 배관과 건축물 간의 최소 이격거리는 가스기술기준(KGS code)에 의해 규제된다. 이 논문을 통해 이러한 최소 이격거리를 관련된 KGS 코드를 개정한 기술적 근거를 보여주고자 한다. 이격거리를 설정하는 접근 방법으로 합리적 사고 시나리오에 의한 피해기반 접근법을 적용하였는데 배관에 부착된 1인치 분기 라인이 파손되어 제트화재가 발생한 시나리오를 선정하였다. 여기서 공업지역에 종사하는 작업자에 대해 비공업지역에 있는 사람들보다 더 높은 허용가능 복사열 플럭스를 적용하였다. 그 이유는 공업지역에 종사하는 근로자는 일반 대중들 보다 더 짧은 시간 안에 비상 대피가 가능하기 때문이다. 이 사고 시나리오에 대한 피해영향 분석 결과로부터 지상에 설치된 고압 천연가스 배관과 건축물 간의 최소 이격거리로서 비공업지역에서는 30 m, 공업지역에서는 15 m로 KGS 코드 개정을 제안하였다. 코드 개정안은 KGS 코드 위원회(가스기술기준위원회)에 채택되어 현재시행 중이다.
In Korea, the minimum separation distance between aboveground high-pressure natural gas pipeline and buildings is regulated by Korea gas safety (KGS) code. In this paper, The technical backgrounds for the revision of the KGS code related to the minimum separation distance was presented. A consequence-based approach was adopted to determine the minimum separation distance by a reasonable accident scenario, which was a jet fire caused by the rupture of one inch branch line attached the gas pipeline. Where, the higher thermal radiation flux threshold was selected for workers in industrial area than for people in non-industrial area, because the workers in industrial area were able to escape in a shorter time than the people in public. As result of consequence analysis for the accident scenario, we suggested the KGS code revision that the minimum separation distances between high-pressure natural gas pipeline installed above ground and buildings should be 30 meter in non-industrial area and 15 meter in industrial area. The revised code was accepted by the committee of the KGS code and now in effect.
[References]
  1. KGS Code, KGS FS451, Korea Gas Safety Code(2018).
  2. IGEM, Steel Pipeline for High Pressure Gas Transmission, The Institution of Gas Engineers(2015).
  3. Swiss Gas Industry, Revised Edition 1997, Swissgas, Zurich, Switzerland(1997).
  4. TRB, Transmission Pipelines and Land Use . A Risk-Informed Approach, Transportation Research Board of The National Academies(2004).
  5. Christou, Michalis D, Amendola A, Smeder M, J. Hazard. Mater., 65, 151, 1999
  6. NTSB, Pipeline Accident Report, National Transportation Safety Board, NTSB Report No. NTSB/PAR-03/01(2003).
  7. Stephens MJ, Gas Research Institute, GRI Report No. GRI-00/0189(2000).
  8. Kim J, Jung S, Korean Chem. Eng. Res., 54(4), 582, 2016
  9. Park K, Korean Chem. Eng. Res., 54(6), 781, 2016
  10. Crowl DA, Louvar JF, New Jersey: Prentice Hall International Series in the Physical and Chemical Engineering Sciences (2002).
  11. Beater B, Pneumatic Drives: System Design, Modelling and Control, Springer, ISBN 3540694706(2007).
  12. CCPS, Center for chemical process safety of the AIChE(1999).
  13. Mudan KS, Croce PA, Society of Fire Protection Engineers, Boston, MA, Section 2:45-87(1990).
  14. Finney DJ, Probit analysis, Cambridge University Press(1971).
  15. Eisenberg NA, Lynch CJ, Breeding RJ, Vulnerability Model, CG-D-136-75 and NTIS AD-015-245, U.S. Coast Guard(1975).
  16. TNO, Methods for the Determination of Possible Damage, The Netherlands Organization of Applied Scientific Research(1992).
  17. HSE, Fire Effects, http://www.hse.gov.uk/offshore/strategy/effects.htm, retrieved Nov. 2018.
  18. API, A Guidance Manual for Modeling Hypothetical Accidental Release to the Atmosphere, Americal Petroleum Institute, Washington D.C.(1996).
  19. NFPA, Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG), National Fire Protection Association, NFPA 59A-11(2006).
  20. CCPS, Layer of Protection Analysis: Simplified Process Risk Assessment, Center for chemical process safety of the AIChE (2001).