Issue
Korean Chemical Engineering Research,
Vol.57, No.2, 210-218, 2019
실로퓨트에 대한 2-피콜린의 흡착 특성 평가
Evaluation of Adsorption Characteristics of 2-Picoline onto Sylopute
실로퓨트를 이용한 식물세포 Taxus chinensis 유래 주요 타르성분인 2-피콜린 흡착 실험을 수행하였다. 2-피콜린 초기농도, 흡착 온도 및 시간을 달리한 회분식 흡착 평형 데이터를 Langmuir, Freundlich, Temkin, Dubinin-Radushkevich 등온흡착식에 적용하였다. 실로퓨트를 이용한 2-피콜린의 흡착은 Langmuir 흡착등온식에 가장 적합함을 알 수 있었다. 흡착온도가 증가함에 따라 흡착용량이 감소하는 경향을 보였으며 실로퓨트를 이용한 2-피콜린 흡착 공정이 적합함을 알 수 있었다. 동역학적 해석을 통하여 본 흡착 공정은 유사 이차 반응속도식에 잘 따름을 알 수 있었으며, 입자 내 확산과 경계층 확산이 율속 단계에 거의 영향을 미치지 않았다. 열역학적 해석을 통해 흡착 과정이 발열이며, 비가역적 비자발적으로 수행되었다. 흡착량이 증가함에 따라 등량흡착열은 감소하는 경향을 보여 흡착제의 표면 에너지가 불균일함을 알 수 있었다.
Batch experiment studies were carried out on the adsorption of the major tar compound, 2-picoline, derived from the plant cell cultures of Taxus chinensis, using Sylopute while varying parameters such as initial 2-picoline concentration, contact time and adsorption temperature. The experimental data were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Comparison of results revealed that the Langmuir isotherm model could account for the adsorption isotherm data with the highest accuracy among the four isotherm models considered. From the analysis of adsorption isotherms, it was found that adsorption capacity decreased with increasing temperature and the adsorption of 2-picoline onto Sylopute was favorable. The kinetic data were well described by the pseudo-second-order kinetic model, while intraparticle diffusion and boundary layer diffusion did not play a dominated role in 2-picoline adsorption according to the intraparticle diffusion model. Thermodynamic parameters revealed the exothermic, irreversible and non-spontaneous nature of adsorption. The isosteric heat of adsorption decreased as surface loading (qe) increased, indicating a heterogeneous surface.
[References]
  1. Zwawiak J, Zaprutko L, J. Med. Sci., 83, 47, 2014
  2. Wang TH, Cancer, 88, 2619, 2000
  3. Hsiao JR, Leu SF, Huang BM, J. Oral Pathol. Med., 38, 188, 2009
  4. Choi MG, Kim JH, Korean J. Chem. Eng., 34(12), 3041, 2017
  5. Lee CG, Kim JH, Process Biochem., 59, 216, 2017
  6. Lee CG, Kim JH, Korean Chem. Eng. Res., 54(1), 89, 2016
  7. Kim GJ, Park GY, Kim JH, Korean J. Microbiol. Biotechnol., 41, 272, 2013
  8. Park GY, Kim GJ, Kim JH, J. Ind. Eng. Chem., 21, 151, 2015
  9. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497, 2014
  10. Bang SY, Kim JH, Biotechnol. Bioproc. Eng., 22, 620, 2017
  11. Lim YS, Kim JH, J. Chem. Thermodyn., 115, 261, 2017
  12. Park SH, Kim JH, Biotechnol. Bioproc. Eng., 23, 541, 2018
  13. Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104, 2019
  14. Shin HS, Kim JH, Process Biochem., 51(7), 917, 2016
  15. Saha P, Chowdhury S, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0,InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
  16. Lee JJ, Korean Chem. Eng. Res., 53(1), 64, 2015
  17. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365, 2009
  18. Jang HR, Oh HJ, Kim JH, Microporous Mesoporous Mater., 165, 219, 2013
  19. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89, 2006
  20. Cheung WH, Szeto YS, McKay G, Bioresour. Technol., 98(15), 2897, 2007
  21. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337, 2008
  22. Na CK, Park HJ, J. Korean Soc. Environ. Eng., 33, 804, 2011
  23. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K, Chem Mater., 11, 1110, 1999
  24. Boparai HK, Joseph M, O'Carroll DM, J. Hazard. Mater., 186(1), 458, 2011
  25. Zulfikar MA, Int. J. Chem., Environ. Biol. Sci., 1, 88, 2013
  26. Dogan M, Abak H, Alkan M, J. Hazard. Mater., 164(1), 172, 2009
  27. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159, 2011